Adenovirus-mediated small-interference RNA for in vivo silencing of angiotensin AT1a receptors in mouse brain.
نویسندگان
چکیده
Because of the lack of pharmacological approaches, molecular genetic methods have been required to differentiate between angiotensin type 1(AT1) receptor subtypes AT1a and AT1b. RNA interference is a new tool for the study of gene function, producing specific downregulation of protein expression. In this study, we used the small hairpin RNA (shRNA) cassette method to screen target sites for selectively silencing AT1a or AT1b receptor subtypes in cultured Neuro-2a cells using real-time RT-PCR. For in vivo functional studies, we used C57BL mice with arterial telemetric probes and computerized licking monitors to test the effect of adenovirus carrying the DNA sequence coding AT1a shRNA (Ad-AT1a-shRNA). Ad-AT1a-shRNA was injected into the lateral ventricle (intracerebroventricular) or the brain stem nucleus tractus solitaries/dorsal vagal nucleus (NTS/DVN) with measurement of water intake, blood pressure (BP), and heart rate (HR) for up to 20 days after injection. Tissue culture studies verified the specificity and the efficiency of the constructs. In animal studies, beta-galactosidase staining and Ang receptor binding assays showed expression of shRNA and downregulation of Ang AT1 receptors in the subfornical organ and NTS/DVN by >70%. Intracerebroventricular injection of Ad-AT1a-shRNA increased water intake with no effect on BP or HR. In contrast, microinjection of Ad-AT1a-shRNA into NTS/DVN caused a decrease in BP with no effect on HR or water intake. Results demonstrate the use of the RNA interference method in site-directed silencing of gene expression and provide a method for the in vivo study of Ang AT1 receptor function.
منابع مشابه
Adenovirus-Mediated Small-Interference RNA for In Vivo Silencing of Angiotensin AT
Because of the lack of pharmacological approaches, molecular genetic methods have been required to differentiate between angiotensin type 1(AT1) receptor subtypes AT1a and AT1b. RNA interference is a new tool for the study of gene function, producing specific downregulation of protein expression. In this study, we used the small hairpin RNA (shRNA) cassette method to screen target sites for sel...
متن کاملBcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia
Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...
متن کاملTargeting brain AT1 receptors by RNA interference.
The dipsogenic and pressor actions of angiotensin II (Ang II) in the central nervous system (CNS) have been well documented in many species and are now accepted as dogma. The major central cardiovascular effects of Ang II are elicited by a complex receptor-dependent signaling cascade initiated by the detection of circulating Ang II in regions of the brain lacking a blood brain barrier (BBB) thr...
متن کاملSelective silencing of angiotensin receptor subtype 1a (AT1aR) by RNA interference.
Angiotensin II exerts its physiological effects by activating multiple subtypes of its receptor such as AT1a-, AT1b-, and AT2-receptors. Because of a high degree of similarity among these G-protein-coupled receptors, it has been difficult to assign diverse physiological actions of angiotensin II through these receptor subtypes. We have developed small interfering RNAs to selectively inhibit the...
متن کاملSmall interfering RNA; principles, applications and challenges--
Gene silencing using RNAi (RNA interference), has recently been used as a successful laboratory technique in determining the function and control of gene expression and provides a wide range of applications in molecular biology and gene therapy. RNAi is a method of suppressing gene expression. In this direction, a single-stranded RNA molecule of about 21–23 nucleotides, called siRNA (small inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 47 2 شماره
صفحات -
تاریخ انتشار 2006