Dynamic cerebral autoregulation during repeated squat-stand maneuvers.

نویسندگان

  • Jurgen A H R Claassen
  • Benjamin D Levine
  • Rong Zhang
چکیده

Transfer function analysis of spontaneous oscillations in blood pressure (BP) and cerebral blood flow (CBF) can quantify the dynamic relationship between BP and CBF. However, such oscillation amplitudes are often small and of questionable clinical significance, vary substantially, and cannot be controlled. At the very low frequencies (<0.07 Hz), coherence between BP and CBF often is low (<0.50) and their causal relationship is debated. Eight healthy subjects performed repeated squat-stand maneuvers to induce large oscillations in BP at frequencies of 0.025 and 0.05 Hz (very low frequency) and 0.1 Hz (low frequency), respectively. BP (Finapres), CBF velocity (CBFV; transcranial Doppler), and end-tidal CO(2) (capnography) were monitored. Spectral analysis was used to quantify oscillations in BP and CBFV and to estimate transfer function phase, gain, and coherence. Compared with spontaneous oscillations, induced oscillations had higher coherence [mean 0.8 (SD 0.11); >0.5 in all subjects at all frequencies] and lower variability in phase estimates. However, gain estimates remained unchanged. Under both conditions, the "high-pass filter" characteristics of dynamic autoregulation were observed. In conclusion, using repeated squat-stand maneuvers, we were able to study dynamic cerebral autoregulation in the low frequencies under conditions of hemodynamically strong and causally related oscillations in BP and CBFV. This not only enhances the confidence of transfer function analysis as indicated by high coherence and improved phase estimation but also strengthens the clinical relevance of this method as induced oscillations in BP and CBFV mimic those associated with postural changes in daily life.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiac baroreflex function and dynamic cerebral autoregulation in elderly Masters athletes.

Cerebral blood flow (CBF) is stably maintained through the combined effects of blood pressure (BP) regulation and cerebral autoregulation. Previous studies suggest that aerobic exercise training improves cardiac baroreflex function and beneficially affects BP regulation, but may negatively affect cerebral autoregulation. The purpose of this study was to reveal the impact of lifelong exercise on...

متن کامل

Arterial-cardiac baroreflex function: insights from repeated squat-stand maneuvers.

To assess baroreflex function under closed-loop conditions, a new approach was used to generate large and physiological perturbations in arterial pressure. Blood pressure (BP) and R-R interval were recorded continuously in 20 healthy young (33 +/- 8 yr) and eight elderly subjects (66 +/- 6 yr). Repeated squat-stand maneuvers at the frequencies of 0.05 and 0.1 Hz were performed to produce period...

متن کامل

Influence of cerebrovascular resistance on the dynamic relationship between blood pressure and cerebral blood flow in humans.

We examined the hypothesis that changes in the cerebrovascular resistance index (CVRi), independent of blood pressure (BP), will influence the dynamic relationship between BP and cerebral blood flow in humans. We altered CVRi with (via controlled hyperventilation) and without [via indomethacin (INDO, 1.2 mg/kg)] changes in PaCO2. Sixteen subjects (12 men, 27 ± 7 yr) were tested on two occasions...

متن کامل

Arterial Pressure, Heart Rate, and Cerebral Hemodynamics Across the Adult Life Span.

Age-related alterations in systemic and cerebral hemodynamics are not well understood. The purpose of this study is to characterize age-related alterations in beat-to-beat oscillations in arterial blood pressure (BP), heart rate (HR), cerebral blood flow (CBF), cardiac baroreflex sensitivity, and dynamic cerebral autoregulation across the adult life span. We studied 136 healthy adults aged 21 t...

متن کامل

Dynamic cerebral autoregulation during and following acute hypoxia: role of carbon dioxide.

Previous research has shown an inconsistent effect of hypoxia on dynamic cerebral autoregulation (dCA), which may be explained by concurrent CO2 control. To test the hypothesis that hypoxic dCA is mediated by CO2, we assessed dCA (transcranial Doppler) during and following acute normobaric isocapnic and poikilocapnic hypoxic exposures. On 2 separate days, the squat-stand maneuver was used to de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 106 1  شماره 

صفحات  -

تاریخ انتشار 2009