Plastid translation is essential for lateral root stem cell patterning in Arabidopsis thaliana

نویسندگان

  • Miyuki T Nakata
  • Mayuko Sato
  • Mayumi Wakazaki
  • Nozomi Sato
  • Koji Kojima
  • Akihiko Sekine
  • Shiori Nakamura
  • Toshiharu Shikanai
  • Kiminori Toyooka
  • Hirokazu Tsukaya
  • Gorou Horiguchi
چکیده

The plastid evolved from a symbiotic cyanobacterial ancestor and is an essential organelle for plant life, but its developmental roles in roots have been largely overlooked. Here, we show that plastid translation is connected to the stem cell patterning in lateral root primordia. The RFC3 gene encodes a plastid-localized protein that is a conserved bacterial ribosomal protein S6 of β/γ proteobacterial origin. The rfc3 mutant developed lateral roots with disrupted stem cell patterning and associated with decreased leaf photosynthetic activity, reduced accumulation of plastid rRNAs in roots, altered root plastid gene expression, and changes in expression of several root stem cell regulators. These results suggest that deficiencies in plastid function affect lateral root stem cells. Treatment with the plastid translation inhibitor spectinomycin phenocopied the defective stem cell patterning in lateral roots and altered plastid gene expression observed in the rfc3 mutant. Additionally, when prps17 defective in a plastid ribosomal protein was treated with low concentrations of spectinomycin, it also phenocopied the lateral root phenotypes of rfc3 The spectinomycin treatment and rfc3 mutation also negatively affected symplasmic connectivity between primary root and lateral root primordia. This study highlights previously unrecognized functions of plastid translation in the stem cell patterning in lateral roots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The gene regulatory network for root epidermal cell-type pattern formation in Arabidopsis.

A fundamental aspect of multicellular development is the patterning of distinct cell types in appropriate locations. In this review, the molecular genetic control of cell-type pattern formation in the root epidermis of Arabidopsis thaliana is summarized. This developmental system represents a simple and genetically tractable example of plant cell patterning. The distribution of the two epiderma...

متن کامل

Arabidopsis CULLIN3 Genes Regulate Primary Root Growth and Patterning by Ethylene-Dependent and -Independent Mechanisms

CULLIN3 (CUL3) together with BTB-domain proteins form a class of Cullin-RING ubiquitin ligases (called CRL3s) that control the rapid and selective degradation of important regulatory proteins in all eukaryotes. Here, we report that in the model plant Arabidopsis thaliana, CUL3 regulates plant growth and development, not only during embryogenesis but also at post-embryonic stages. First, we show...

متن کامل

ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1) is required for cell production, patterning, and morphogenesis in root development

Arabidopsis homolog of trithorax1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle dur...

متن کامل

Analysis of SFL1 and SFL2 Promoter Region in Arabidipsis thaliana using Gateway Cloning System

SFL1 and SFl2 (SETH Four Like) genes are two members of SETH4 gene family in Arabidopsis thaliana expressed in saprophytic tissues. In this study, expression of SFL1 and SFL2 genes were studied using Gateway Cloning Technology. Primers were designed for PCR amplification of promoter region of SFL1 (900 bp) and SFL2 (930 bp) genes having attB1 recombination sites using Kod Hi Fi DNA polymerase e...

متن کامل

Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins.

Multicellular organisms depend on cell production, cell fate specification, and correct patterning to shape their adult body. In plants, auxin plays a prominent role in the timely coordination of these different cellular processes. A well-studied example is lateral root initiation, in which auxin triggers founder cell specification and cell cycle activation of xylem pole-positioned pericycle ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2018