Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface.

نویسندگان

  • Natalie Mrachacz-Kersting
  • Ning Jiang
  • Andrew James Thomas Stevenson
  • Imran Khan Niazi
  • Vladimir Kostic
  • Aleksandra Pavlovic
  • Sasa Radovanovic
  • Milica Djuric-Jovicic
  • Federica Agosta
  • Kim Dremstrup
  • Dario Farina
چکیده

Brain-computer interfaces (BCIs) have the potential to improve functionality in chronic stoke patients when applied over a large number of sessions. Here we evaluated the effect and the underlying mechanisms of three BCI training sessions in a double-blind sham-controlled design. The applied BCI is based on Hebbian principles of associativity that hypothesize that neural assemblies activated in a correlated manner will strengthen synaptic connections. Twenty-two chronic stroke patients were divided into two training groups. Movement-related cortical potentials (MRCPs) were detected by electroencephalography during repetitions of foot dorsiflexion. Detection triggered a single electrical stimulation of the common peroneal nerve timed so that the resulting afferent volley arrived at the peak negative phase of the MRCP (BCIassociative group) or randomly (BCInonassociative group). Fugl-Meyer motor assessment (FM), 10-m walking speed, foot and hand tapping frequency, diffusion tensor imaging (DTI) data, and the excitability of the corticospinal tract to the target muscle [tibialis anterior (TA)] were quantified. The TA motor evoked potential (MEP) increased significantly after the BCIassociative intervention, but not for the BCInonassociative group. FM scores (0.8 ± 0.46 point difference, P = 0.01), foot (but not finger) tapping frequency, and 10-m walking speed improved significantly for the BCIassociative group, indicating clinically relevant improvements. Corticospinal tract integrity on DTI did not correlate with clinical or physiological changes. For the BCI as applied here, the precise coupling between the brain command and the afferent signal was imperative for the behavioral, clinical, and neurophysiological changes reported. This association may become the driving principle for the design of BCI rehabilitation in the future. Indeed, no available BCIs can match this degree of functional improvement with such a short intervention.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient neuroplasticity induction in chronic stroke patients by an 1 associative brain - computer interface

6 Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, 7 Aalborg University, Aalborg, Denmark 8 Department of Neurorehabilitation Engineering, Bernstein Focus Neurotechnology, Göttingen, 9 Bernstein Center for Computational Neuroscience, University Medical Center, Göttingen, Georg10 August University, Göttingen, Germany 11 Neurology Clinic, Clinical Center of...

متن کامل

Selecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface

User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...

متن کامل

An EEG-Based BCI Platform to Improve Arm Reaching Ability of Chronic Stroke Patients by Means of an Operant Learning Training with a Contingent Force Feedback

The Brain Computer Interface platform described in this paper was implemented to enhance neuroplasticity of a stroke-damaged brain in order to promote recovery of motor functions like reaching, fundamentally important in a healthy daily life. To this scope a closed-loop between the stroke patients’ brain and a robotic arm is established by means of a real-time identification of the cerebral act...

متن کامل

P 138: Improving Neuroplasticity Through Neuroinflammation Pathways as a Therapeutic Goal in the Treatment of Autism

Neuroplasticity is the brain's ability to reorganize itself by forming new neural connections throughout life. Neuroplasticity allows the neurons in the brain to compensate injury and disease and to adjust their activities in response to new situations or to changes in their environment. At the other side, it is now well established that neuronal function is strongly influenced by both central ...

متن کامل

Comparison of Different Linear Filter Design Methods for Handling Ocular Artifacts in Brain Computer Interface System

 Brain-computer interfaces (BCI) record brain signals, analyze and translate them into control commands which are relayed to output devices that carry out desired actions. These systems do not use normal neuromuscular output pathways. Actually, the principal goal of BCI systems is to provide better life style for physically-challenged people which are suffered from cerebral palsy, amyotrophic l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 115 3  شماره 

صفحات  -

تاریخ انتشار 2016