Portfolio Optimization with Higher Moment Risk Measures
نویسندگان
چکیده
The paper considers modeling of risk-averse preferences in stochastic programming problems using risk measures. We utilize the axiomatic foundation of coherent risk measures and deviation measures in order to develop simple representations that express risk measures via solutions of specially constructed stochastic programming problems. Using the developed representations, we introduce a new family of higher-moment coherent risk measures that measures, and, in particular, the second-moment coherent risk measure (SMCR). It is demonstrated that the SMCR measure is compatible with the second order stochastic dominance, and can be efficiently used in portfolio optimization, especially by investors with aggressive risk preferences.
منابع مشابه
Using MODEA and MODM with Different Risk Measures for Portfolio Optimization
The purpose of this study is to develop portfolio optimization and assets allocation using our proposed models. The study is based on a non-parametric efficiency analysis tool, namely Data Envelopment Analysis (DEA). Conventional DEA models assume non-negative data for inputs and outputs. However, many of these data take the negative value, therefore we propose the MeanSharp-βRisk (MShβR) model...
متن کاملHigher Moment Coherent Risk Measures
The paper considers modeling of risk-averse preferences in stochastic programming problems using risk measures. We utilize the axiomatic foundation of coherent risk measures and deviation measures in order to develop simple representations that express risk measures via specially constructed stochastic programming problems. Using the developed representations, we introduce a new family of highe...
متن کاملOptimal Portfolio Allocation based on two Novel Risk Measures and Genetic Algorithm
The problem of optimal portfolio selection has attracted a great attention in the finance and optimization field. The future stock price should be predicted in an acceptable precision, and a suitable model and criterion for risk and the expected return of the stock portfolio should be proposed in order to solve the optimization problem. In this paper, two new criterions for the risk of stock pr...
متن کاملRobustness-based portfolio optimization under epistemic uncertainty
In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...
متن کاملOptimal Portfolio Selection for Tehran Stock Exchange Using Conditional, Partitioned and Worst-case Value at Risk Measures
This paper presents an optimal portfolio selection approach based on value at risk (VaR), conditional value at risk (CVaR), worst-case value at risk (WVaR) and partitioned value at risk (PVaR) measures as well as calculating these risk measures. Mathematical solution methods for solving these optimization problems are inadequate and very complex for a portfolio with high number of assets. For t...
متن کامل