Regulation of cytokine-driven functional differentiation of CD8 T cells by suppressor of cytokine signaling 1 controls autoimmunity and preserves their proliferative capacity toward foreign antigens.
نویسندگان
چکیده
We have previously shown that naive CD8 T cells exposed to IL-7 or IL-15 in the presence of IL-21 undergo Ag-independent proliferation with concomitant increase in TCR sensitivity. In this study, we examined whether CD8 T cells that accumulate in suppressor of cytokine signaling 1 (SOCS1)-deficient mice because of increased IL-15 signaling in vivo would respond to an autoantigen expressed at a very low level using a mouse model of autoimmune diabetes. In this model, P14 TCR transgenic CD8 T cells (P14 cells) adoptively transferred to rat insulin promoter-glycoprotein (RIP-GP) mice, which express the cognate Ag in the islets, do not induce diabetes unless the donor cells are stimulated by exogenous Ag. Surprisingly, SOCS1-deficient P14 cells, which expanded robustly following IL-15 stimulation, proliferated poorly in response to Ag and failed to cause diabetes in RIP-GP mice. SOCS1-deficient CD8 T cells expressing a polyclonal TCR repertoire also showed defective expansion following in vivo Ag stimulation. Notwithstanding the Ag-specific proliferation defect, SOCS1-null P14 cells produced IFN-gamma and displayed potent cytolytic activity upon Ag stimulation, suggesting that SOCS1-null CD8 T cells underwent cytokine-driven functional differentiation that selectively compromised their proliferative response to Ag but not to cytokines. Cytokine-driven homeostatic expansion in lymphopenic RIP-GP mice allowed SOCS1-null, but not wild-type, P14 cells to exert their pathogenic potential even without Ag stimulation. These findings suggest that by attenuating cytokine-driven proliferation and functional differentiation, SOCS1 not only controls the pathogenicity of autoreactive cells but also preserves the ability of CD8 T cells to proliferate in response to Ags.
منابع مشابه
بررسی تأثیر سرم موش حامله بر روی سلولهای دندریتیک در القاء تحریک لنفوسیتهای T و تولید سیتوکینهای IL-10 و IFN-γ Dendritic Cells and Antigen Specific T Cell Responses: Effect of Pregnant Mouse Serum
Background & Aim: Tolerance to the semi-allogenic fetal graft by the maternal immune system is a medical enigma that has stimulated investigations for a half of century. Several hypotheses have been proposed to explain the tolerance of mother to the fetus. The successful pregnancy is proposed and proved by many scientists to be a Th2 dominant phenomenon. This hypothesis is proved in most as...
متن کاملPhenotypic and Functional Comparison between Flask Adherent and Magnetic Activated Cell Sorted Monocytes Derived Dendritic Cells
Background: Generation of an effective dendritic cell (DC) based cancer vaccine depends on appropriate differentiation of monocytes in vitro. Objective: To compare the effects of monocyte separation methods, flask adherence (Flask-DC) and magnetic activated cell sorting (MACS-DC), on phenotypic and functional characteristics of resultant DCs. Methods: DCs from healthy volunteers were generated ...
متن کاملIMMUNOBIOLOGY Suppressor of cytokine signaling 1 attenuates IL-15 receptor signaling in CD8 thymocytes
SOCS1 / mice die prematurely of increased interferon(IFN ) signaling with severe thymic atrophy and accelerated maturation of T cells. However, it was unclear whether the thymic defects were caused by SOCS1 deficiency or by increased IFN signaling. Using SOCS1 / IFN / mice, we show in this study that SOCS1 deficiency skews thymocyte development toward CD8 lineage independently of IFN . Fetal th...
متن کاملSuppressor of cytokine signaling 1 attenuates IL-15 receptor signaling in CD8+ thymocytes.
SOCS1-/- mice die prematurely of increased interferon-gamma (IFNgamma) signaling with severe thymic atrophy and accelerated maturation of T cells. However, it was unclear whether the thymic defects were caused by SOCS1 deficiency or by increased IFNgamma signaling. Using SOCS1-/- IFNgamma-/- mice, we show in this study that SOCS1 deficiency skews thymocyte development toward CD8 lineage indepen...
متن کاملThe signaling symphony: T cell receptor tunes cytokine-mediated T cell differentiation.
T cell development, differentiation, and maintenance are orchestrated by 2 key signaling axes: the antigen-specific TCR and cytokine-mediated signals. The TCR signals the recognition of self- and foreign antigens to control T cell homeostasis for immune tolerance and immunity, which is regulated by a variety of cytokines to determine T cell subset homeostasis and differentiation. TCR signaling ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 185 1 شماره
صفحات -
تاریخ انتشار 2010