The Second Conference on the Lunar Highlands Crust and New Directions
نویسندگان
چکیده
Many studies exist on magmatic volatiles (H, C, N, F, S, Cl) in and on the Moon, within the last several years, that have cast into question the post-Apollo view of lunar formation, the distribution and sources of volatiles in the Earth-Moon system, and the thermal and magmatic evolution of the Moon. However, these recent observations are not the first data on lunar volatiles. When Apollo samples were first returned, substantial efforts were made to understand volatile elements, and a wealth of data regarding volatile elements exists in this older literature. In this review paper, we approach volatiles in and on the Moon using new and old data derived from lunar samples and remote sensing. From combining these data sets, we identified many points of convergence, although numerous questions remain unanswered. The abundances of volatiles in the bulk silicate Moon (BSM), lunar mantle, and urKREEP [last ~1% of the lunar magma ocean (LMO)] were estimated and placed within the context of the LMO model. The lunar mantle is likely heterogeneous with respect to volatiles, and the relative abundances of F, Cl, and H2O in the lunar mantle (H2O > F >> Cl) do not directly reflect those of BSM or urKREEP (Cl > H2O ≈ F). In fact, the abundances of volatiles in the cumulate lunar mantle were likely controlled by partitioning of volatiles between LMO liquid and nominally anhydrous minerals instead of residual liquid trapped in the cumulate pile. An internally consistent model for lunar volatiles in BSM should reproduce the absolute and relative abundances of volatiles in urKREEP, the anorthositic primary crust, and the lunar mantle within the context of processes that occurred during the thermal and magmatic evolution of the Moon. Using this mass-balance constraint, we conducted LMO crystallization calculations with a specific focus on the distributions and abundances of F, Cl, and H2O to determine whether or not estimates of F, Cl, and H2O in urKREEP are consistent with those of the lunar mantle, estimated independently from the analysis of volatiles in mare volcanic materials. Our estimate of volatiles in the bulk lunar mantle are 0.54–4.5 ppm F, 0.15–5.3 ppm H2O, 0.26–2.9 ppm Cl, 0.014–0.57 ppm C, and 78.9 ppm S. Our estimates of H2O are depleted compared to independent estimates of H2O in the lunar mantle, which are largely biased toward the “wettest” samples. Although the lunar mantle is depleted in volatiles relative to Earth, unlike the Earth, the mantle is not the primary host for volatiles. The primary host of the Moon’s incompatible lithophile volatiles (F, Cl, H2O) is urKREEP, which we estimate to have 660 ppm F, 300–1250 ppm H2O, and 1100–1350 ppm Cl. This urKREEP composition implies a BSM with 7.1 ppm F, 3–13 ppm H2O, and 11–14 ppm Cl. An upper bound on the abundances of F, Cl, and H2O in urKREEP and the BSM, based on F abundances in CI carbonaceous chondrites, are reported to be 5500 ppm F, 0.26–1.09 wt% H2O, and 0.98–1.2 wt% Cl and 60 ppm F, 27–114 ppm H2O, and 100–123 ppm Cl, respectively. The role of volatiles in many lunar geologic processes was also determined and discussed. Specifically, analyses of volatiles from lunar glass beads as well as the phase assemblages present in coatings on those beads were used to infer that H2 is likely the primary vapor component responsible for propelling the fire-fountain eruptions that produced the pyroclastic glass beads (as opposed to CO). The textural occurrences of some volatile-bearing minerals McCUBBIN ET AL.: VOLATILES IN AND ON THE MOON 1669
منابع مشابه
What Lunar Meteorites Tell Us about the Lunar Highlands Crust
The first meteorite to be found 1 that was eventually (1984) recognized to have originated from the Moon is Yamato 791197 [1]. The find date, November 20, 1979, was four days after the end of the first Conference on the Lunar Highland Crust [2]. Since then, >75 other lunar meteorites have been found, and these meteorites provide information about the lunar highlands that was not known from stud...
متن کاملGlobal occurrence trend of high-Ca pyroxene on lunar highlands and its implications
We present details of the global distribution of high-Ca pyroxene (HCP)-rich sites in the lunar highlands based on the global data set of hyperspectral reflectance obtained by the SELENE Spectral Profiler. Most HCP-rich sites in the lunar highlands are found at fresh impact craters. In each crater, most of the detection points are distributed on the ejecta, rim, and floor of the impact craters ...
متن کاملStructure and formation of the lunar farside highlands.
The formation of the lunar farside highlands has long been an open problem in lunar science. We show that much of the topography and crustal thickness in this terrain can be described by a degree-2 harmonic. No other portion of the Moon exhibits comparable degree-2 structure. The quantified structure of the farside highlands unites them with the nearside and suggests a relation between lunar cr...
متن کاملFeatureless spectra on the Moon as evidence of residual lunar primordial crust
We report the global distribution of areas exhibiting no absorption features (featureless or FL) on the lunar surface, based on the reflectance spectral data set obtained by the Spectral Profiler onboard Kaguya/SELENE. We found that FL sites are located in impact basins and large impact craters in the Feldspathic Highlands Terrane, while there are no FL sites in the Procellarum regions nor the ...
متن کاملLunar impact basins and crustal heterogeneity: new Western limb and far side data from galileo.
Multispectral images of the lunar western limb and far side obtained from Galileo reveal the compositional nature of several prominent lunar features and provide new information on lunar evolution. The data reveal that the ejecta from the Orientale impact basin (900 kilometers in diameter) lying outside the Cordillera Mountains was excavated from the crust, not the mantle, and covers pre-Orient...
متن کاملOpaques in Mercury’s Crust: Additional Evidence for a Low-feo Magma Ocean
Introduction: Analysis of Mariner 10 and MESSENGER datasets reveal the importance of opaque components on Mercury's surface. A global darkening agent, suggested to be ilmenite or other Fe,Ti-bearing opaque mineral, has been invoked to explain the lower albedo of Mercury relative to the lunar highlands. Separately, a low-reflectance material (LRM) has been recognized as one of three dominant col...
متن کامل