Nonlinear Control System Design Using Variable Complexity Modelling and Multiobjective Optimization
نویسندگان
چکیده
To design controllers for complex non-linear systems usually involves the use of expensive computational models. A non-linear thermodynamic model of a gas turbine engine is used to evaluate a selection of designs for a multivariable PI controller configuration. An approach using variable complexity modelling (VCM) is introduced to allow more designs to be evaluated and also to speed up the design process. Response surface methodology (RSM) is a statistical technique in which smooth functions are used to model an objective function. RSM employs statistical methods to create functions, typically polynomials, to model the response or outcome of a numerical experiment in terms of several independent variables. Regression analysis is applied to fit polynomial models to this data for various control responses. These control responses models are evaluated by a multiobjective genetic algorithm to design the controller parameters. The final designs are checked using the original non-linear model.
منابع مشابه
Satellite Conceptual Design Multi-Objective Optimization Using Co Framework
This paper focuses upon the development of an efficient method for conceptual design optimization of a satellite. There are many option for a satellite subsystems that could be choice, as acceptable solution to implement of a space system mission. Every option should be assessment based on the different criteria such as cost, mass, reliability and technology contraint (complexity). In this rese...
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملEvolutionary Multiobjective Optimization for Fuzzy Knowledge Extraction
− A new trend in the design of fuzzy rulebased systems is the use of evolutionary multiobjective optimization (EMO) algorithms. This trend is observed in various areas in machine learning. EMO algorithms are often used to search for a number of Pareto-optimal non-linear systems with respect to their accuracy and complexity. In this paper, we first explain some basic concepts in multiobjective o...
متن کاملXergy analysis and multiobjective optimization of a biomass gasification-based multigeneration system
Biomass gasification is the process of converting biomass into a combustible gas suitable for use in boilers, engines, and turbines to produce combined cooling, heat, and power. This paper presents a detailed model of a biomass gasification system and designs a multigeneration energy system that uses the biomass gasification process for generating combined cooling, heat, and electricity. Energy...
متن کاملMultiobjective Optimal Power Plant Operation Through Coordinate Control with Pressure Set Point Scheduling
Coordinated control schemes, at fossil fuel power plants, drive units as a whole through a variable pressure operating policy. Ordinarily, the pressure control loop set-point is obtained from the unit load demand through a fixed nonlinear mapping that does not allow for process optimization under operating conditions different from the originals. This paper presents a procedure to optimally des...
متن کامل