Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic acid in Arabidopsis.
نویسندگان
چکیده
Remodeling of actin filament arrays in response to biotic and abiotic stimuli is thought to require precise control over the generation and availability of filament ends. Heterodimeric capping protein (CP) is an abundant filament capper, and its activity is inhibited by membrane signaling phospholipids in vitro. How exactly CP modulates the properties of filament ends in cells and whether its activity is coordinated by phospholipids in vivo is not well understood. By observing directly the dynamic behavior of individual filament ends in the cortical array of living Arabidopsis thaliana epidermal cells, we dissected the contribution of CP to actin organization and dynamics in response to the signaling phospholipid, phosphatidic acid (PA). Here, we examined three cp knockdown mutants and found that reduced CP levels resulted in more dynamic activity at filament ends, and this significantly enhanced filament-filament annealing and filament elongation from free ends. The cp mutants also exhibited more dense actin filament arrays. Treatment of wild-type cells with exogenous PA phenocopied the actin-based defects in cp mutants, with an increase in the density of filament arrays and enhanced annealing frequency. These cytoskeletal responses to exogenous PA were completely abrogated in cp mutants. Our data provide compelling genetic evidence that the end-capping activity of CP is inhibited by membrane signaling lipids in eukaryotic cells. Specifically, CP acts as a PA biosensor and key transducer of fluxes in membrane signaling phospholipids into changes in actin cytoskeleton dynamics.
منابع مشابه
Heterodimeric Capping Protein from Arabidopsis Is a Membrane-Associated, Actin-Binding Protein1[W][OPEN]
The actin cytoskeleton is a major regulator of cell morphogenesis and responses to biotic and abiotic stimuli. The organization and activities of the cytoskeleton are choreographed by hundreds of accessory proteins. Many actin-binding proteins are thought to be stimulus-response regulators that bind to signaling phospholipids and change their activity upon lipid binding. Whether these proteins ...
متن کاملHeterodimeric capping protein from Arabidopsis is a membrane-associated, actin-binding protein.
The actin cytoskeleton is a major regulator of cell morphogenesis and responses to biotic and abiotic stimuli. The organization and activities of the cytoskeleton are choreographed by hundreds of accessory proteins. Many actin-binding proteins are thought to be stimulus-response regulators that bind to signaling phospholipids and change their activity upon lipid binding. Whether these proteins ...
متن کاملCapping Protein Modulates the Dynamic Behavior of Actin Filaments in Response to Phosphatidic Acid in ArabidopsisC W
Jiejie Li, Jessica L. Henty-Ridilla, Shanjin Huang, Xia Wang, Laurent Blanchoin, and Christopher J. Staiger Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064 b Institut de Recherches en Technologie et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire and Végétale, Commissariat á l’Energie Atomique/Centre National de la Recherche Scientifique/I...
متن کاملArabidopsis capping protein senses cellular phosphatidic acid levels and transduces these into changes in actin cytoskeleton dynamics
Plants respond rapidly and precisely to a broad spectrum of developmental, biotic and abiotic cues. In many instances, signaling cascades involved in transducing this information result in changes to the cellular architecture and cytoskeletal rearrangements. Based originally on paradigms for animal cell signaling, phospholipids have received increased scrutiny as key intermediates for transmitt...
متن کاملHeterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid.
The cytoskeleton is a key regulator of morphogenesis, sexual reproduction, and cellular responses to extracellular stimuli. Changes in the cellular architecture are often assumed to require actin-binding proteins as stimulus-response modulators, because many of these proteins are regulated directly by binding to intracellular second messengers or signaling phospholipids. Phosphatidic acid (PA) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 24 9 شماره
صفحات -
تاریخ انتشار 2012