Comparative Study of Bio-inspired algorithms for Unconstrained Optimization Problems

نویسندگان

  • Adil Hashmi
  • Divya Gupta
  • Nishant Goel
  • Shruti Goel
چکیده

Nature inspired meta-heuristic algorithms are iterative search processes which find near optimal solutions by efficiently performing exploration and exploitation of the solution space. Considering the solution space in a specified region, this work compares performances of Bat, Cuckoo search and Firefly algorithms for unconstrained optimization problems. Global optima are found using various test functions of different characteristics. Keywords— Firefly Algorithm, Bat Algorithm, Cuckoo Search Algorithm, Unconstrained Optimization, Benchmark Functions, Nature-Inspired Algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stock Market Prediction Using Bio-inspired Computing: a Survey

Bio-inspired evolutionary algorithms are probabilistic search methods that mimic natural biological evolution. They show the behavior of the biological entities interacting locally with one another or with their environment to solve complex problems. This paper aims to analyze the most predominantly used bio-inspired optimization techniques that have been used for stock market prediction and he...

متن کامل

A New Hybrid Conjugate Gradient Method Based on Eigenvalue Analysis for Unconstrained Optimization Problems

In this paper‎, ‎two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS})‎ ‎conjugate gradient method are presented to solve unconstrained optimization problems‎. ‎A remarkable property of the proposed methods is that the search direction always satisfies‎ ‎the sufficient descent condition independent of line search method‎, ‎based on eigenvalue analysis‎. ‎The globa...

متن کامل

An Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems

In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...

متن کامل

The modified BFGS method with new secant relation ‎for unconstrained optimization problems‎

Using Taylor's series we propose a modified secant relation to get a more accurate approximation of the second curvature of the objective function. Then, based on this modified secant relation we present a new BFGS method for solving unconstrained optimization problems. The proposed method make use of both gradient and function values while the usual secant relation uses only gradient values. U...

متن کامل

BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems

Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013