A Novel C2C E-Commerce Recommender System Based on Link Prediction: Applying Social Network Analysis

نویسندگان

  • Mohammad Dehghan Bahabadi
  • Seyyed Alireza Hashemi Golpayegani
  • Leila Esmaeili
چکیده

Social network analysis emerged as an important research topic in sociology decades ago, and it has also attracted scientists from various fields of study like psychology, anthropology, geography and economics. In recent years, a significant number of researches has been conducted on using social network analysis to design e-commerce recommender systems. Most of the current recommender systems are designed for B2C e-commerce websites. This paper focuses on building a recommendation algorithm for C2C e-commerce business model by considering special features of C2C e-commerce websites. In this paper, we consider users and their transactions as a network; by this mapping, link prediction technique which is an important task in social network analysis could be used to build the recommender system. The proposed tow-level recommendation algorithm, rather than topology of the network, uses nodes’ features like: category of items, ratings of users, and reputation of sellers. The results show that the proposed model can be used to predict a portion of future trades between users in a C2C commercial network. Keywords— Recommender System; Commercial Network; Link Prediction; C2C Commerce; Social Network Analysis

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Link Prediction Method Based on Learning Automata in Social Networks

Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...

متن کامل

IRHM: Inclusive Review Helpfulness Model for Review Helpfulness Prediction in E-commerce Platform

Online reviews have become essential aspect in E-commerce platforms due to its role for assisting customers’ buying choices. Furthermore, the most helpful reviews that have some attributes are support customers buying decision; therefore, there is needs for investigating what are the attributes that increase the Review Helpfulness (RH). This research paper proposed novel model called inclusive ...

متن کامل

Map-Reduce based Link Prediction for Large Scale Social Network

Link prediction is an important research direction in the field of Social Network Analysis. The significance of this research area is crucial especially in the fields of network evolution analysis and recommender system in online social networks as well as e-commerce sites. This paper aims at predicting the hidden links that are likely to occur in near future. The possibility of formation of li...

متن کامل

Improving Accuracy of Recommender Systems using Social Network Information and Longitudinal Data

The rapid development of technology, the Internet, and the development of electronic commerce have led to the emergence of recommender systems. These systems will assist the users in finding and selecting their desired items. The accuracy of the advice in recommender systems is one of the main challenges of these systems. Regarding the fuzzy systems capabilities in determining the borders of us...

متن کامل

Ensemble-based Top-k Recommender System Considering Incomplete Data

Recommender systems have been widely used in e-commerce applications. They are a subclass of information filtering system, used to either predict whether a user will prefer an item (prediction problem) or identify a set of k items that will be user-interest (Top-k recommendation problem). Demanding sufficient ratings to make robust predictions and suggesting qualified recommendations are two si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1407.8365  شماره 

صفحات  -

تاریخ انتشار 2014