Spoofing detection with DNN and one-class SVM for the ASVspoof 2015 challenge
نویسندگان
چکیده
Speaker verification systems have achieved great performance in recent times. However, we usually measure performance on a ideal scenarios with naive impostors that do not modify their voices to impersonate the target speakers. The fact of impersonating a legitimate user is known as spoofing attack. Recent works show the vulnerability of current speaker verification technology to several types of attacks. Most of these works use non-public databases and different performance measures, which makes difficult to compare approaches. The spoofing challenge (ASVspoof 2015) tries to overcome this problem by proposing a common evaluation framework. This paper describes our submission to the challenge. We proposed to use spectral log-filter-bank and relative phase shift features as input to classifiers based on deep neural networks (DNN). The first of our classifiers used DNN posteriors to decide if the trial is spoof or non-spoof. The second used a bottleneck feature from the DNN as input to a one-class SVM. The one-class SVM models the distribution of legitimate speech, not needing spoofing data for training. We fused the score of the different classifiers to produce our final submission. Our system attained very competitive results with EER<0.05% in 9 out of 10 spoofing types.
منابع مشابه
Robust deep feature for spoofing detection - the SJTU system for ASVspoof 2015 challenge
Recently there have been wide interests in speaker verification for various applications. Although the reported equal error rate (EER) is relatively low, many evidences show that the present speaker verification technologies can be susceptible to malicious spoofing attacks. Inspired by the great success of deep learning in the automatic speech recognition, deep neural network (DNN) based approa...
متن کاملRobust Deep Feature for Spoofing Detection - The SJTU System for ASVspoof
Recently there have been wide interests in speaker verification for various applications. Although the reported equal error rate (EER) is relatively low, many evidences show that the present speaker verification technologies can be susceptible to malicious spoofing attacks. Inspired by the great success of deep learning in the automatic speech recognition, deep neural network (DNN) based approa...
متن کاملAnti-spoofing Methods for Automatic Speaker Verification System
Growing interest in automatic speaker verification (ASV) systems has lead to significant quality improvement of spoofing attacks on them. Many research works confirm that despite the low equal error rate (EER) ASV systems are still vulnerable to spoofing attacks. In this work we overview different acoustic feature spaces and classifiers to determine reliable and robust countermeasures against s...
متن کاملAudio Replay Attack Detection with Deep Learning Frameworks
Nowadays spoofing detection is one of the priority research areas in the field of automatic speaker verification. The success of Automatic Speaker Verification Spoofing and Countermeasures (ASVspoof) Challenge 2015 confirmed the impressive perspective in detection of unforeseen spoofing trials based on speech synthesis and voice conversion techniques. However, there is a small number of researc...
متن کاملFeature Selection Based on CQCCs for Automatic Speaker Verification Spoofing
The ASVspoof 2017 challenge aims to assess spoofing and countermeasures attack detection accuracy for automatic speaker verification. It has been proven that constant Q cepstral coefficients(CQCCs) processes speech in different frequencies with variable resolution and performs much better than traditional features. When coupled with a Gaussian mixture model (GMM), it is an excellently effective...
متن کامل