Untangling the annual cycle of the tropical tropopause layer with an idealized moist model: Tropical versus extratropical control

نویسنده

  • M. JUCKER
چکیده

The processes regulating the climatology and annual cycle of the tropical tropopause layer (TTL) and cold point are not fully understood. Three main drivers have been identified: planetary scale equatorial waves excited by tropical convection, planetary scale extratropical waves associated with the deep Brewer-Dobson Circulation, and synoptic scale waves associated with the midlatitude storm tracks. In both observations and comprehensive atmospheric models, all three coexist, making it difficult to separate their contributions. Here, a new intermediatecomplexity atmospheric model is developed. Simple modification of the model’s lower boundary allows detailed study of the three processes key to the TTL, both in isolation and together. It is shown that tropical planetary waves are most critical for regulating the mean TTL, setting the depth and temperature of the cold point. The annual cycle of the TTL, which is coldest (warmest) in boreal winter (summer), however, depends critically on the strong annual variation in baroclinicity of the Northern Hemisphere relative to that of the Southern Hemisphere. Planetary scale waves excited from either the tropics or extratropics then double the impact of baroclinicity on the TTL annual cycle. The remarkably generic response of TTL temperatures over a range of configurations suggests that the details of the wave forcing are unimportant, provided there is sufficient variation in the upward extent of westerly winds over the annual cycle. Westerly winds enable the propagation of stationary Rossby waves, and weakening of the subtropical jet in boreal summer inhibits their propagation into the lower stratosphere, warming the TTL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Untangling the annual cycle of the tropical tropopause layer with an idealized moist model

The processes regulating the climatology and annual cycle of the tropical tropopause layer (TTL) and cold point are not fully understood. Three main drivers have been identified: planetary scale equatorial waves excited by tropical convection, planetary scale extratropical waves associated with the deep Brewer-Dobson Circulation, and synoptic scale waves associated with the midlatitude storm tr...

متن کامل

Tropopause Structure and the Role of Eddies

This paper presents a series of dynamical states using an idealized three-dimensional general circulation model with gray radiation and latent heat release. Beginning with the case of radiative–convective equilibrium, an eddy-free two-dimensional state with zonally symmetric flow is developed, followed by a threedimensional state that includes baroclinic eddy fluxes. In both dry and moist cases...

متن کامل

The Tropical Response to Extratropical Thermal Forcing in an Idealized GCM: The Importance of Radiative Feedbacks and Convective Parameterization

The response of tropical precipitation to extratropical thermal forcing is reexamined using an idealized moist atmospheric GCM that has no water vapor or cloud feedbacks, simplifying the analysis while retaining the aquaplanet configuration coupled to a slab ocean from the authors’ previous study. As in earlier studies, tropical precipitation in response to high-latitude forcing is skewed towar...

متن کامل

On the Signatures of Equatorial and Extratropical Wave Forcing in Tropical Tropopause Layer Temperatures

Temperatures in the tropical tropopause layer (TTL) play an important role in stratosphere–troposphere exchange and in the formation and maintenance of thin cirrus clouds. Many previous studies have examined the contributions of extratropical and equatorial waves to the TTL using coarse-vertical-resolution satellite and reanalysis data. In this study, the authors provide new insight into the ro...

متن کامل

Isotopic composition of water in the tropical tropopause layer in cloud‐resolving simulations of an idealized tropical circulation

[1] The processes that fix the fractionation of the stable isotopologues of water in the tropical tropopause layer (TTL) are studied using cloud‐resolving model simulations of an idealized equatorial Walker circulation with an imposed Brewer‐Dobson circulation. This simulation framework allows the explicit representation of the convective and microphysical processes at work in the TTL. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017