The comparison of Normal Bayes and SVM classifiers in the context of face shape recognition
نویسنده
چکیده
In this paper the face recognition system based on the shape information extracted with the Active Shape Model is presented. Three different classification approaches have been used: the Normal Bayes Classifier, the Linear Support Vector Machine (LSVM) with a hard margin and the LSVM with a soft margin. The influence of the shape extraction algorithm parameters on the classification efficiency has been investigated. The experiments were conducted on a set of 3300 images of 100 people which ensures the statistical significance of the obtained results.
منابع مشابه
The Performance of Two Deformable Shape Models in the Context of the Face Recognition
In this paper we compare the performance of face recognition systems based on two deformable shape models and on three classification approaches. Face contours have been extracted by using two methods: the Active Shapes and the Bayesian Tangent Shapes. The Normal Bayes Classifiers and the Minimum Distance Classifiers (based on the Euclidean and Mahalanobis metrics) have been designed and then c...
متن کاملA comprehensive experimental comparison of the aggregation techniques for face recognition
In face recognition, one of the most important problems to tackle is a large amount of data and the redundancy of information contained in facial images. There are numerous approaches attempting to reduce this redundancy. One of them is information aggregation based on the results of classifiers built on selected facial areas being the most salient regions from the point of view of classificati...
متن کاملAn Empirical Comparison of SVM and Some Supervised Learning Algorithms for Vowel recognition
In this article, we conduct a study on the performance of some supervised learning algorithms for vowel recognition. This study aims to compare the accuracy of each algorithm. Thus, we present an empirical comparison between five supervised learning classifiers and two combined classifiers: SVM, KNN, Naive Bayes, Quadratic Bayes Normal (QDC) and Nearst Mean. Those algorithms were tested for vow...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کامل