EspH, a new cytoskeleton-modulating effector of enterohaemorrhagic and enteropathogenic Escherichia coli.

نویسندگان

  • Xuanlin Tu
  • Israel Nisan
  • Chen Yona
  • Emanuel Hanski
  • Ilan Rosenshine
چکیده

Enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) are closely related pathogens. During infection, EPEC and EHEC use a type III secretion system (TTSS) to translocate effector proteins into the infected cells and thereby modify specific host functions. These include transient filopodium formation which is Cdc42-dependent. Filopodia formation is followed by assembly of actin pedestals, the process enhanced by inhibition of Cdc42. We discovered that orf 18 of the enterocyte effacement locus encodes a new effector, which we termed EspH. We show that EspH is translocated efficiently into the infected cells by the TTSS and localizes beneath the EPEC microcolonies. Inactivation of espH resulted in enhanced formation of filopodia and attenuated the pedestals formation. Furthermore, overexpression of EspH resulted in strong repression of filopodium formation and heightened pedestal formation. We also demonstrate that overexpression of EspH by EHEC induces marked elongation of the typically flat pedestals. Similar pedestal elongation was seen upon infection of COS cells overexpressing EspH. EspH transiently expressed by the COS cells was localized to the membrane and disrupted the actin cytoskeletal structure. Our findings indicate that EspH is a modulator of the host actin cytoskeleton structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A bacterial effector targets host DH-PH domain RhoGEFs and antagonizes macrophage phagocytosis.

Bacterial pathogens often harbour a type III secretion system (TTSS) that injects effector proteins into eukaryotic cells to manipulate host processes and cause diseases. Identification of host targets of bacterial effectors and revealing their mechanism of actions are crucial for understating bacterial virulence. We show that EspH, a type III effector conserved in enteric bacterial pathogens i...

متن کامل

The Interplay between the Escherichia coli Rho Guanine Nucleotide Exchange Factor Effectors and the Mammalian RhoGEF Inhibitor EspH

UNLABELLED Rho GTPases are important regulators of many cellular processes. Subversion of Rho GTPases is a common infection strategy employed by many important human pathogens. Enteropathogenic Escherichia coli and enterohemorrhagic Escherichia coli (EPEC and EHEC) translocate the effector EspH, which inactivates mammalian Rho guanine exchange factors (GEFs), as well as Map, EspT, and EspM2, wh...

متن کامل

Inhibition of WAVE Regulatory Complex Activation by a Bacterial Virulence Effector Counteracts Pathogen Phagocytosis

To establish pathogenicity, bacteria must evade phagocytosis directed by remodeling of the actin cytoskeleton. We show that macrophages facilitate pathogen phagocytosis through actin polymerization mediated by the WAVE regulatory complex (WRC), small GTPases Arf and Rac1, and the Arf1 activator ARNO. To establish extracellular infections, enteropathogenic (EPEC) and enterohaemorrhagic (EHEC) Es...

متن کامل

EspJ of enteropathogenic and enterohaemorrhagic Escherichia coli inhibits opsono-phagocytosis

A key strategy in microbial pathogenesis is the subversion of the first line of cellular immune defences presented by professional phagocytes. Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC respectively) remain extracellular while colonizing the gut mucosa by attaching and effacing mechanism. EPEC use the type three secretion system effector protein EspF to prevent thei...

متن کامل

Enterohaemorrhagic E. coli modulates an ARF6:Rab35 signaling axis to prevent recycling endosome maturation during infection

Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC/EHEC) manipulate a plethora of host cell processes to establish infection of the gut mucosa. This manipulation is achieved via the injection of bacterial effector proteins into host cells using a Type III secretion system. We have previously reported that the conserved EHEC and EPEC effector EspG disrupts recycling endosome function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular microbiology

دوره 47 3  شماره 

صفحات  -

تاریخ انتشار 2003