A Time-Accurate Upwind Unstructured Finite Volume Method for Compressible Flow With Cure of Pathological Behaviors

نویسنده

  • Ching Y. Loh
چکیده

A time-accurate, upwind, finite volume method for computing compressible flows on unstructured grids is presented. The method is second order accurate in space and time and yields high resolution in the presence of discontinuities. For efficiency, the Roe approximate Riemann solver with an entropy correction is employed. In the basic Euler/Navier-Stokes scheme, many concepts of high order upwind schemes are adopted: the surface flux integrals are carefully treated, a Cauchy-Kowalewski time-stepping scheme is used in the time-marching stage, and a multidimensional limiter is applied in the reconstruction stage. However, even with these up-to-date improvements, and a Roe Riemann solver with entropy correction, the basic upwind scheme is still plagued by the so-called “pathological behaviors,” e.g., the carbuncle phenomenon, the expansion shock, etc. A systematic solution to these limitations is presented, which uses a simple dissipation model while still preserving second order accuracy. The modified, stabilized scheme is referred to as the enhanced time-accurate upwind (ETAU) scheme in this paper. The unstructured grid capability renders flexibility for use in complex geometry; and the present ETAU Euler/Navier-Stokes scheme is capable of handling a broad spectrum of flow regimes from high supersonic to subsonic at very low Mach number, appropriate for both CFD (computational fluid dynamics) and CAA (computational aeroacoustics). Numerous examples are included to demonstrate the robustness of the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Order Resolution and Parallel Implementation on Unstructured Grids a Thesis Doctor of Philosophy

High Order Resolution and Parallel Implementation on Unstructured Grids. (December 1996) Yufeng Yao, University of Glasgow Supervisor: Professor B. E. Richards In this thesis the numerical solution of the two-dimensional compressible NavierStokes equations for the application on aerodynamic problems is tackled. The motivation is to develop a cell-centred upwind finite volume scheme with high or...

متن کامل

Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique

Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...

متن کامل

FORCE schemes on unstructured meshes I: Conservative hyperbolic systems

In this paper we propose a new high order accurate centered path-conservative method on unstructured triangular and tetrahedral meshes for the solution of multidimensional non-conservative hyperbolic systems, as they typically arise in the context of compressible multi-phase flows. Our path-conservative centered scheme is an extension of the centered method recently proposed in [36] for conserv...

متن کامل

Adaptive Solution of Steady Two Dimensional Flow on an Unstructured Grid

Two-dimensional Euler equations have been solved on an unstructured grid. An upwind finite volume scheme, based on Roe's flux difference splitting method, is used to discretize the equations. Using advancing front method, an initial Delaunay triangulation has been made. The adaptation procedure involves mesh enrichment coarsening in regions of flow with high low gradients of flow properties, ac...

متن کامل

Adaptive Solution of Steady Two Dimensional Flow on an Unstructured Grid

Two-dimensional Euler equations have been solved on an unstructured grid. An upwind finite volume scheme, based on Roes flux difference splitting method, is used to discretize the equations. Using advancing front method, an initial Delaunay triangulation has been made. The adaptation procedure involves mesh enrichment coarsening in regions of flow with high low gradients of flow properties, acc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007