LIMIT CYCLES FOR m–PIECEWISE DISCONTINUOUS POLYNOMIAL LIÉNARD DIFFERENTIAL EQUATIONS

نویسندگان

  • JAUME LLIBRE
  • ANTONIO TEIXEIRA
چکیده

We provide lower bounds for the maximum number of limit cycles for the m–piecewise discontinuous polynomial differential equations ẋ = y + sgn(gm(x, y))F (x), ẏ = −x, where the zero set of the function sgn(gm(x, y)) with m = 2, 4, 6, . . . is the product of m/2 straight lines passing through the origin of coordinates dividing the plane in sectors of angle 2π/m, and sgn(z) denotes the sign function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit Cycles of the Generalized Polynomial Liénard Differential Equations

We apply the averaging theory of first, second and third order to the class of generalized polynomial Liénard differential equations. Our main result shows that for any n, m ≥ 1 there are differential equations of the form ẍ+f(x)ẋ+g(x) = 0, with f and g polynomials of degree n and m respectively, having at least [(n + m− 1)/2] limit cycles, where [·] denotes the integer part function.

متن کامل

Limit Cycles of a Class of Generalized Liénard Polynomial Equations

In this paper we study the maximum number of limit cycles of the following generalized Liénard polynomial differential system of the first order ẋ = y2p−1 ẏ = −x2q−1 − εf (x, y) where p and q are positive integers, ε is a small parameter and f (x, y) is a polynomial of degree m. We prove that this maximum number depends on p, q and m. AMS subject classification:

متن کامل

Relationships between Darboux Integrability and Limit Cycles for a Class of Able Equations

We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.

متن کامل

Limit Cycles for a Class of Discontinuous Generalized Lienard Polynomial Differential Equations

We divide R2 in l sectors S1, ..., Sl, with l > 1 even. We define in R2 a discontinuous differential system such that in each sector Sk, for k = 1, ..., l, is defined a smooth generalized Lienard polynomial differential equation ẍ + fi(x)ẋ + gi(x) = 0, i = 1, 2 alternatively, where fi and gi are polynomials of degree n−1 and m respectively. We apply the averaging theory of first order for disco...

متن کامل

Bifurcations of Multiple Relaxation Oscillations in Polynomial Liénard Equations

In this paper, we prove the presence of limit cycles of given multiplicity, together with a complete unfolding, in families of (singularly perturbed) polynomial Liénard equations. The obtained limit cycles are relaxation oscillations. Both classical Liénard equations and generalized Liénard equations are treated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012