Convergence of an adaptive finite element method on quadrilateral meshes

نویسندگان

  • Roland Becker
  • David Trujillo
چکیده

We prove convergence and optimal complexity of an adaptive finite element algorithm on quadrilateral meshes. The local mesh refinement algorithm is based on regular subdivision of marked cells, leading to meshes with hanging nodes. In order to avoid multiple layers of these, a simple rule is defined, which leads to additional refinement. We prove an estimate for the complexity of this refinement technique. As in former work, we use an adaptive marking strategy which only leads to refinement according to an oscillation term, if it is dominant. In comparison to the case of triangular meshes, the a posteriori error estimator contains an additional term which implicitly measure the deviation of a given quadrilateral from a parallelogram. The well-known lower bound of the estimator for the case of conforming P 1 elements does not hold here. We instead prove decrease of the estimator, in order to establish convergence and complexity estimates. Key-words: Adaptive finite elements, convergence of adaptive algorithms, complexity estimates, quadrilateral meshes, hanging nodes ∗ LMA-UPPA-INRIA-Bordeaux-Sud-Ouest-Concha in ria -0 03 42 67 2, v er si on 1 28 N ov 2 00 8 Convergence d’une méthode éléments finis adaptative pour des maillages quadrilatéraux Résumé : Nous démontrons la convergence d’un algorithme d’éléments finis adaptatifs sur un maillage formés de quadrilatéres. Le raffinement local du maillage consiste en une subdivision réguliére des mailles marquées, faisant ainsi apparaitres des noeuds flottants. De plus, nous interdisons que deux mailles voisines aient deux niveaux de raffinements d’cart, et pour cela nous sommes contraints d’introduire des raffinement supplémentaires. Nous donnons alors une estimation de la complexité de cette technique de raffinement. Par rapport au cas des maillages triangulaires l’estimateur d’erreur contient un terme supplémentaire mesurant la dformation des quadrilatéres par rapport à un parallélogramme. Le résultat classiqe en P 1 sur la borne inférieure de l’estimateur n’est plus vérifié dans ce cas et nous dḿontrons alors une décroissance de l’estimateur pour établir la convergence et analyser la complexité de la méthode Mots-clés : Eléments finis adaptatifs, convergence d’algorithmes adaptatifs, estimation de la complexité, maillages quadrilatéraux, noeuds flottants in ria -0 03 42 67 2, v er si on 1 28 N ov 2 00 8 Convergence of an adaptive finite element method on quadrilateral meshes 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Quadrilateral and Hexahedral Finite Element Methods with Hanging Nodes and Convergence Analysis

In this paper we study the convergence of adaptive finite element methods for the general non-affine equivalent quadrilateral and hexahedral elements on 1-irregular meshes with hanging nodes. Based on several basic ingredients, such as quasi-orthogonality, estimator reduction and Döfler marking strategy, convergence of the adaptive finite element methods for the general second-order elliptic pa...

متن کامل

A quadratic finite volume element method for parabolic problems on quadrilateral meshes

In this paper we utilize affine biquadratic elements and a two-step temporal discretization to develop a finite volume element method for parabolic problems on quadrilateral meshes. The method is proved to have an optimal order convergence rate in L2(0, T ; H1(Ω)) under the ‘asymptotically parallelogram’ mesh assumption. Numerical experiments that corroborate the theoretical analysis are also p...

متن کامل

50 36 v 1 3 M ay 2 00 0 APPROXIMATION BY QUADRILATERAL FINITE ELEMENTS

We consider the approximation properties of finite element spaces on quadrilateral meshes. The finite element spaces are constructed starting with a given finite dimensional space of functions on a square reference element, which is then transformed to a space of functions on each convex quadrilateral element via a bilinear isomorphism of the square onto the element. It is known that for affine...

متن کامل

Torsion Analysis of High-Rise Buildings using Quadrilateral Panel Elements with Drilling D.O.F.s

Generally, the finite element method is a powerful procedure for analysis of tall buildings. Yet, it should be noted that there are some problems in the application of many finite elements to the analysis of tall building structures. The presence of artificial flexure and parasitic shear effects in many lower order plane stress and membrane elements, cause the numerical procedure to converge in...

متن کامل

Approximation by quadrilateral finite elements

We consider the approximation properties of finite element spaces on quadrilateral meshes. The finite element spaces are constructed starting with a given finite dimensional space of functions on a square reference element, which is then transformed to a space of functions on each convex quadrilateral element via a bilinear isomorphism of the square onto the element. It is known that for affine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008