Surface tension propulsion of fungal spores.

نویسندگان

  • Xavier Noblin
  • Sylvia Yang
  • Jacques Dumais
چکیده

Most basidiomycete fungi actively eject their spores. The process begins with the condensation of a water droplet at the base of the spore. The fusion of the droplet onto the spore creates a momentum that propels the spore forward. The use of surface tension for spore ejection offers a new paradigm to perform work at small length scales. However, this mechanism of force generation remains poorly understood. To elucidate how fungal spores make effective use of surface tension, we performed a detailed mechanical analysis of the three stages of spore ejection: the transfer of energy from the drop to the spore, the work of fracture required to release the spore from its supporting structure and the kinetic energy of the spore after ejection. High-speed video imaging of spore ejection in Auricularia auricula and Sporobolomyces yeasts revealed that drop coalescence takes place over a short distance ( approximately 5 microm) and energy transfer is completed in less than 4 mus. Based on these observations, we developed an explicit relation for the conversion of surface energy into kinetic energy during the coalescence process. The relation was validated with a simple artificial system and shown to predict the initial spore velocity accurately (predicted velocity: 1.2 m s(-1); observed velocity: 0.8 m s(-1) for A. auricula). Using calibrated microcantilevers, we also demonstrate that the work required to detach the spore from the supporting sterigma represents only a small fraction of the total energy available for spore ejection. Finally, our observations of this unique discharge mechanism reveal a surprising similarity with the mechanics of jumping in animals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-assembly of class II hydrophobins on highly polar surfaces

Hydrophobins, adhesive proteins produced by filamentous fungi, have been described as the most surface active proteins known and show extraordinary properties regarding formation of surfaces. Hydrophobins have roles in the growth and development of the fungi including function in adhesion to surfaces, reducing surface tension for aerial growth and spore hydrophobicity and to aid spreading of ae...

متن کامل

Self-assembly of class II hydrophobins on polar surfaces.

Hydrophobins are structural proteins produced by filamentous fungi that are amphiphilic and function through self-assembling into structures such as membranes. They have diverse roles in the growth and development of fungi, for example in adhesion to substrates, for reducing surface tension to allow aerial growth, in forming protective coatings on spores and other structures. Hydrophobin membra...

متن کامل

The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates

Primary biological aerosol particles (PBAPs) may play an important role in aerosol–climate interactions, in particular by affecting ice formation in mixed phase clouds. However, the role of PBAPs is poorly understood because the sources and distribution of PBAPs in the atmosphere are not well quantified. Here we include emissions of fungal spores and bacteria in a global aerosol microphysics mo...

متن کامل

The ice nucleation ability of one of the most abundant types of fungal spores found in the atmosphere

Recent atmospheric measurements show that biological particles are a potentially important class of ice nuclei. Types of biological particles that may be good ice nuclei include bacteria, pollen and fungal spores. We studied the ice nucleation properties of water droplets containing fungal spores from the genus Cladosporium, one of the most abundant types of spores found in the atmosphere. For ...

متن کامل

Self-propelling, coalescing droplets

This work proposes and explores a new propulsion mechanism for sessile droplets which could be of interest for microfluidic applications. This mechanism relies on the Marangoni stresses resulting from the surface tension gradient arising when two droplets of different surface tensions coalesce. We argue that the tendency of the fluid to flow towards regions of higher surface tension is sufficie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 212 17  شماره 

صفحات  -

تاریخ انتشار 2009