Adaptive neuro-fuzzy wheel slip control
نویسندگان
چکیده
Due to complex and nonlinear dynamics of a braking process and complexity in the tire–road interaction, the control of automotive braking systems performance simultaneously with the wheel slip represents a challenging problem. The non-optimal wheel slip level during braking, causing inability to achieve the desired tire–road friction force strongly influences the braking distance. In addition, steerability and maneuverability of the vehicle could be disturbed. In this paper, an active neuro-fuzzy approach has been developed for improving the wheel slip control in the longitudinal direction of the commercial vehicle. The dynamic neural network has been used for prediction and an adaptive control of the brake actuation pressure, during each braking cycle, according to the identified maximum adhesion coefficient between the wheel and road surface. The brake actuation pressure was dynamically adjusted on the level that provides the optimal level of the longitudinal wheel slip vs. the brake pressure selected by driver, the current vehicle speed, the brake interface temperature, vehicle load conditions, and the current value of longitudinal wheel slip. Thus the dynamic neural network model operates (learn, generalize and predict) on-line during each braking cycle, fuzzy logic has been integrated with the neural model as a support to the neural controller control actions in the case when prediction error of the dynamic neural model reached the predefined value. The hybrid control approach presented here provided intelligent dynamic model – based control of the brake actuation pressure in order to keep the longitudinal wheel slip on the optimum level during a braking cycle. 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Neuro-fuzzy control of antilock braking system using sliding mode incremental learning algorithm
A neuro-fuzzy adaptive control approach for nonlinear dynamical systems, coupled with unknown dynamics, modeling errors, and various sorts of disturbances, is proposed and used to design a wheel slip regulating controller. The implemented control structure consists of a conventional controller and a neuro-fuzzy network-based feedback controller. The former is provided both to guarantee global a...
متن کاملA New Intelligent Motion Planning for Mobile Robot Navigation using Multiple Adaptive Neuro-Fuzzy Inference System
Nowadays intelligent tools such as fuzzy inference system (FIS), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are mainly considered as effective and suitable methods for modeling an engineering system. This paper presents a new hybrid technique based on the combination of fuzzy inference system and artificial neural network for addressing navigational proble...
متن کاملAn indirect adaptive neuro-fuzzy speed control of induction motors
This paper presents an indirect adaptive system based on neuro-fuzzy approximators for the speed control of induction motors. The uncertainty including parametric variations, the external load disturbance and unmodeled dynamics is estimated and compensated by designing neuro-fuzzy systems. The contribution of this paper is presenting a stability analysis for neuro-fuzzy speed control of inducti...
متن کاملAdaptive Traction Control
This report presents two different control algorithms for adaptive vehicle traction control, which includes (1) wheel slip control, (2) optimal time control, (3) anti-spin acceleration and anti-skid control, and (4) longitudinal platoon control. The two control algorithms are respectively based on adaptive fuzzy logic control and sliding mode control with on-line road condition estimation. The ...
متن کاملObserver-Based Direct Adaptive Fuzzy-Neural Control for Anti-lock Braking Systems
In this paper, an observer-based direct adaptive fuzzy-neural controller (ODAFNC) for an anti-lock braking system (ABS) is developed under the constraint that only the system output, i.e., the wheel slip ratio, is measurable. The main control strategy is to force the wheel slip ratio to well track the optimal value, which may vary with the environment. The observer-based output feedback control...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 40 شماره
صفحات -
تاریخ انتشار 2013