Rigorous Numerics for Nonlinear Differential Equations Using Chebyshev Series
نویسندگان
چکیده
A computational method based on Chebyshev series to rigorously compute solutions of initial and boundary value problems of analytic nonlinear vector fields is proposed. The idea is to recast solutions as fixed points of an operator defined on a Banach space of rapidly decaying Chebyshev coefficients and to use the so-called radii polynomials to show the existence of a unique fixed point nearby an approximate solution. As applications, solutions of initial value problems in the Lorenz equations and symmetric connecting orbits in the Gray-Scott equation are rigorously computed. The symmetric connecting orbits are obtained by solving a boundary value problem with one of the boundary values in the stable manifold.
منابع مشابه
YANN RICAUD, Laval University Rigorous numerics for periodic orbits of piecewise-smooth systems: a functional analytic approach based on Chebyshev series
In this talk, we introduce a rigorous computational method for proving existence of periodic orbits of continuous and discontinuous (Filippov) piecewise-smooth differential equations. The computer-assisted proofs are obtained by combining a functional analytic approach based on Chebyshev series together with a Newton-Kantorovich type argument (the radii polynomial approach). Using this approach...
متن کاملA Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative
The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...
متن کاملRigorous numerics for piecewise-smooth systems: A functional analytic approach based on Chebyshev series
In this paper, a rigorous computational method to compute solutions of piecewisesmooth systems using a functional analytic approach based on Chebyshev series is introduced. A general theory, based on the radii polynomial approach, is proposed to compute crossing periodic orbits for continuous and discontinuous (Filippov) piecewise-smooth systems. Explicit analytic estimates to carry the compute...
متن کاملA new method based on fourth kind Chebyshev wavelets to a fractional-order model of HIV infection of CD4+T cells
This paper deals with the application of fourth kind Chebyshev wavelets (FKCW) in solving numerically a model of HIV infection of CD4+T cells involving Caputo fractional derivative. The present problem is a system of nonlinear fractional differential equations. The goal is to approximate the solution in the form of FKCW truncated series. To do this, an operational matrix of fractional integrati...
متن کاملNumerical solution of general nonlinear Fredholm-Volterra integral equations using Chebyshev approximation
A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 52 شماره
صفحات -
تاریخ انتشار 2014