Virtual Screening of Peptide and Peptidomimetic Fragments Targeted to Inhibit Bacterial Dithiol Oxidase DsbA
نویسندگان
چکیده
Antibacterial drugs with novel scaffolds and new mechanisms of action are desperately needed to address the growing problem of antibiotic resistance. The periplasmic oxidative folding system in Gram-negative bacteria represents a possible target for anti-virulence antibacterials. By targeting virulence rather than viability, development of resistance and side effects (through killing host native microbiota) might be minimized. Here, we undertook the design of peptidomimetic inhibitors targeting the interaction between the two key enzymes of oxidative folding, DsbA and DsbB, with the ultimate goal of preventing virulence factor assembly. Structures of DsbB--or peptides--complexed with DsbA revealed key interactions with the DsbA active site cysteine, and with a hydrophobic groove adjacent to the active site. The present work aimed to discover peptidomimetics that target the hydrophobic groove to generate non-covalent DsbA inhibitors. The previously reported structure of a Proteus mirabilis DsbA active site cysteine mutant, in a non-covalent complex with the heptapeptide PWATCDS, was used as an in silico template for virtual screening of a peptidomimetic fragment library. The highest scoring fragment compound and nine derivatives were synthesized and evaluated for DsbA binding and inhibition. These experiments discovered peptidomimetic fragments with inhibitory activity at millimolar concentrations. Although only weakly potent relative to larger covalent peptide inhibitors that interact through the active site cysteine, these fragments offer new opportunities as templates to build non-covalent inhibitors. The results suggest that non-covalent peptidomimetics may need to interact with sites beyond the hydrophobic groove in order to produce potent DsbA inhibitors.
منابع مشابه
Crystal structure of the dithiol oxidase DsbA enzyme from proteus mirabilis bound non-covalently to an active site peptide ligand.
The disulfide bond forming DsbA enzymes and their DsbB interaction partners are attractive targets for development of antivirulence drugs because both are essential for virulence factor assembly in Gram-negative pathogens. Here we characterize PmDsbA from Proteus mirabilis, a bacterial pathogen increasingly associated with multidrug resistance. PmDsbA exhibits the characteristic properties of a...
متن کاملCrystal Structure of the DsbB-DsbA Complex Reveals a Mechanism of Disulfide Bond Generation
Oxidation of cysteine pairs to disulfide requires cellular factors present in the bacterial periplasmic space. DsbB is an E. coli membrane protein that oxidizes DsbA, a periplasmic dithiol oxidase. To gain insight into disulfide bond formation, we determined the crystal structure of the DsbB-DsbA complex at 3.7 A resolution. The structure of DsbB revealed four transmembrane helices and one shor...
متن کاملStructural and Biochemical Characterization of Chlamydia trachomatis DsbA Reveals a Cysteine-Rich and Weakly Oxidising Oxidoreductase
The Gram negative bacteria Chlamydia trachomatis is an obligate intracellular human pathogen that can cause pelvic inflammatory disease, infertility and blinding trachoma. C. trachomatis encodes a homolog of the dithiol oxidoreductase DsbA. Bacterial DsbA proteins introduce disulfide bonds to folding proteins providing structural bracing for secreted virulence factors, consequently these protei...
متن کاملThe structure of the bacterial oxidoreductase enzyme DsbA in complex with a peptide reveals a basis for substrate specificity in the catalytic cycle of DsbA enzymes.
Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of unknown function and a thioredoxin domain, where active site cysteines shuttle between an oxidized...
متن کاملVirtual Screening Analysis and In-vitro Xanthine Oxidase Inhibitory Activity of Some Commercially Available Flavonoids
Allopurinol, the xanthine oxidase inhibitor, is the only drug available for the treatment of gout. We examined the xanthine oxidase inhibitory activity of some commercially available flavonoids such asepigallocatechin, acacatechin, myricetin, naringenin, daidzein and glycitein by virtual screening and in-vitro studies. The interacting residues within the complex model and their contact types we...
متن کامل