Improved Maximum a Posteriori Cortical Segmentation by Iterative Relaxation of Priors

نویسندگان

  • Manuel Jorge Cardoso
  • Matthew J. Clarkson
  • Gerard R. Ridgway
  • Marc Modat
  • Nick C. Fox
  • Sébastien Ourselin
چکیده

Thickness measurements of the cerebral cortex can aid diagnosis and provide valuable information about the temporal evolution of several diseases such as Alzheimer's, Huntington's, Schizophrenia, as well as normal ageing. The presence of deep sulci and 'collapsed gyri' (caused by the loss of tissue in patients with neurodegenerative diseases) complicates the tissue segmentation due to partial volume (PV) effects and limited resolution of MRI. We extend existing work to improve the segmentation and thickness estimation in a single framework. We model the PV effect using a maximum a posteriori approach with novel iterative modification of the prior information to enhance deep sulci and gyri delineation. We use a voxel based approach to estimate thickness using the Laplace equation within a Lagrangian-Eulerian framework leading to sub-voxel accuracy. Experiments performed on a new digital phantom and on clinical Alzheimer's disease MR images show improvements in both accuracy and robustness of the thickness measurements, as well as a reduction of errors in deep sulci and collapsed gyri.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AdaPT: An adaptive preterm segmentation algorithm for neonatal brain MRI

Advances in neonatal care have improved the survival of infants born prematurely although these infants remain at increased risk of adverse neurodevelopmental outcome. The measurement of white matter structure and features of the cortical surface can help define biomarkers that predict this risk. The measurement of these structures relies upon accurate automated segmentation routines, but these...

متن کامل

Unsupervised partial volume estimation using 3-D and statistical priors

Our main objective is to compute the volume of interest of images from magnetic resonance imaging (MRI). We suggest a method based on maximum a posteriori. Using texture models, we propose a new partial volume determination. We model tissues using generalized gaussian distributions fitted from a mixture of their gray levels and texture information. Texture information relies on estimation error...

متن کامل

Multi-Atlas-based Segmentation with Hierarchical Max-Flow

This study investigates a method for brain tissue segmentation from 3D T1 weighted (T1w) MR images via convex relaxation with a hierarchical ordering constraint. It employs a multi-atlas-based initialization from 5 training images and is tested on 12 T1w MR images provided by the MICCAI 2013 MRBrainS segmentation challenge. The registered atlas images, fully segmented into eight different brain...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 12 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2009