Group C-algebras as Compact Quantum Metric Spaces

نویسنده

  • MARC A. RIEFFEL
چکیده

Let l be a length function on a group G, and let Ml denote the operator of pointwise multiplication by l on l(G). Following Connes, Ml can be used as a “Dirac” operator for C ∗ r (G). It defines a Lipschitz seminorm on C∗ r (G), which defines a metric on the state space of C∗ r (G). We investigate whether the topology from this metric coincides with the weak-∗ topology (our definition of a “compact quantum metric space”). We give an affirmative answer for G = Z when l is a word-length, or the restriction to Z of a norm on R. This works for C∗ r (G) twisted by a 2-cocycle, and thus for non-commutative tori. Our approach involves Connes’ cosphere algebra, and an interesting compactification of metric spaces which is closely related to geodesic rays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Composition Operators Between Extended Lipschitz Algebras on Compact Metric Spaces

‎In this paper, we provide a complete description of weighted composition operators between extended Lipschitz algebras on compact metric spaces. We give necessary and sufficient conditions for the injectivity and the sujectivity of these operators. We also obtain some sufficient conditions and some necessary conditions for a weighted composition operator between these spaces to be compact.

متن کامل

Weighted composition operators between Lipschitz algebras of complex-valued bounded functions

‎In this paper‎, ‎we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces‎, ‎not necessarily compact‎. ‎We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators‎. ‎We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.

متن کامل

Fixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications

In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the  assumption of normality we establish common fixed point theorems for the generalized quasi-contractions  with the spectral radius $r(lambda)$ of the quasi-contractive constant vector $lambda$ satisfying $r(lambda)in [0,frac{1}{s})$  in the set...

متن کامل

Matricial Quantum Gromov-hausdorff Distance

We develop a matricial version of Rieffel’s Gromov-Hausdorff distance for compact quantum metric spaces within the setting of operator systems and unital C∗-algebras. Our approach yields a metric space of “isometric” unital complete order isomorphism classes of metrized operator systems which in many cases exhibits the same convergence properties as those in the quantum metric setting, as for e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002