Pathogenic role of calcium-sensing receptors in the development and progression of pulmonary hypertension.
نویسندگان
چکیده
An increase in cytosolic free Ca(2+) concentration ([Ca(2+)]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and a critical stimulation for PASMC proliferation and migration. Previously, we demonstrated that expression and function of calcium sensing receptors (CaSR) in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH) and animals with experimental pulmonary hypertension (PH) were greater than in PASMC from normal subjects and control animals. However, the mechanisms by which CaSR triggers Ca(2+) influx in PASMC and the implication of CaSR in the development of PH remain elusive. Here, we report that CaSR functionally interacts with TRPC6 to regulate [Ca(2+)]cyt in PASMC. Downregulation of CaSR or TRPC6 with siRNA inhibited Ca(2+)-induced [Ca(2+)]cyt increase in IPAH-PASMC (in which CaSR is upregulated), whereas overexpression of CaSR or TRPC6 enhanced Ca(2+)-induced [Ca(2+)]cyt increase in normal PASMC (in which CaSR expression level is low). The upregulated CaSR in IPAH-PASMC was also associated with enhanced Akt phosphorylation, whereas blockade of CaSR in IPAH-PASMC attenuated cell proliferation. In in vivo experiments, deletion of the CaSR gene in mice (casr(-/-)) significantly inhibited the development and progression of experimental PH and markedly attenuated acute hypoxia-induced pulmonary vasoconstriction. These data indicate that functional interaction of upregulated CaSR and upregulated TRPC6 in PASMC from IPAH patients and animals with experimental PH may play an important role in the development and progression of sustained pulmonary vasoconstriction and pulmonary vascular remodeling. Blockade or downregulation of CaSR and/or TRPC6 with siRNA or miRNA may be a novel therapeutic strategy to develop new drugs for patients with pulmonary arterial hypertension.
منابع مشابه
Calcium-Sensing Receptor Regulates Cytosolic [Ca2+] and Plays a Major Role in the Development of Pulmonary Hypertension
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by elevated pulmonary vascular resistance (PVR) leading to right heart failure and premature death. The increased PVR results in part from pulmonary vascular remodeling and sustained pulmonary vasoconstriction. Excessive pulmonary vascular remodeling stems from increased pulmonary arterial smooth muscle cell (PASMC) pr...
متن کاملCa(2+) and ion channels in hypoxia-mediated pulmonary hypertension.
Alveolar hypoxia, a consequence of many lung diseases, can have adverse effects on the pulmonary vasculature. The changes that occur in the pulmonary circulation with exposure to chronic hypoxia include reductions in the diameter of the pulmonary arteries due to structural remodeling of the vasculature. Although the structural and functional changes that occur in the development of pulmonary hy...
متن کاملEvaluation of Pulmonary Hypertension In First Degree Relatives Of Patients With Primary Pulmonary Hypertension
Background: Pulmonary hypertension (PH) was defined for the first time in 1951 as primary pulmonary hypertension (PPH). Some studies emphasized on the role of genetics in the development of pulmonary hypertension in family members of affected patients. So, in this study we evaluated the prevalence of pulmonary hypertension in first degree family of patients with documented PPH. Methods: In thi...
متن کاملRegulation of Ca2+ Signaling in Pulmonary Hypertension
Understanding the cellular and molecular mechanisms involved in the development and progression of pulmonary hypertension (PH) remains imperative if we are to successfully improve the quality of life and life span of patients with the disease. A whole plethora of mechanisms are associated with the development and progression of PH. Such complexity makes it difficult to isolate one particular pa...
متن کاملA case of severe pulmonary hypertension associated with common arterial trunk and VSD in a 9 years old child
Background: Common arterial trunk (CAT) is a rare congenital heart disease, and often leads to the early development of pulmonary hypertension and disability. Among the critical structural heart defects, the frequency of CAT is 3%, which reflects the severe hemodynamic disturbances. The natural course of the disease is characterized by a high mortality rate up to 88% during the first year of li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 310 9 شماره
صفحات -
تاریخ انتشار 2016