Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis
نویسندگان
چکیده
One of the most frequently deregulated signaling pathways in breast cancer is the PI 3-K/Akt cascade. Genetic lesions are commonly found in PIK3CA, PTEN, and AKT, which lead to excessive and constitutive activation of Akt and downstream signaling that results in uncontrolled proliferation and increased cellular survival. One such genetic lesion is the somatic AKT1(E17K) mutation, which has been identified in 4-8% of breast cancer patients. To determine how this mutation contributes to mammary tumorigenesis, we constructed a genetically engineered mouse model that conditionally expresses human AKT1(E17K) in the mammary epithelium. Although AKT1(E17K) is only weakly constitutively active and does not promote proliferation in vitro, it is capable of escaping negative feedback inhibition to exhibit sustained signaling dynamics in vitro. Consistently, both virgin and multiparous AKT1(E17K) mice develop mammary gland hyperplasia that do not progress to carcinoma. This hyperplasia is accompanied by increased estrogen receptor expression, although exposure of the mice to estrogen does not promote tumor development. Moreover, AKT1(E17K) prevents HER2-driven mammary tumor formation, in part through negative feedback inhibition of RTK signaling. Analysis of TCGA breast cancer data revealed that the mRNA expression, total protein levels, and phosphorylation of various RTKs are decreased in human tumors harboring AKT1(E17K).
منابع مشابه
Tumors with AKT1E17K Mutations Are Rational Targets for Single Agent or Combination Therapy with AKT Inhibitors.
AKT1(E17K) mutations occur at low frequency in a variety of solid tumors, including those of the breast and urinary bladder. Although this mutation has been shown to transform rodent cells in culture, it was found to be less oncogenic than PIK3CA mutations in breast epithelial cells. Moreover, the therapeutic potential of AKT inhibitors in human tumors with an endogenous AKT1(E17K) mutation is ...
متن کاملMutant AKT1-E17K is oncogenic in lung epithelial cells
The hotspot E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6-2% of human lung cancers. In this manuscript, we sought to determine whether this AKT1 variant is a bona-fide activating mutation and plays a role in the development of lung cancer. Here we report that in immortalized human bronchial epithelial cells (BEAS-2B cells) mutant AKT1-E17K promotes anchorag...
متن کاملAccurate detection of low prevalence AKT1 E17K mutation in tissue or plasma from advanced cancer patients
Personalized healthcare relies on accurate companion diagnostic assays that enable the most appropriate treatment decision for cancer patients. Extensive assay validation prior to use in a clinical setting is essential for providing a reliable test result. This poses a challenge for low prevalence mutations with limited availability of appropriate clinical samples harboring the mutation. To ena...
متن کاملAbsence of AKT1 Mutations in Glioblastoma
BACKGROUND Oncogenic activation of the PI3K signalling pathway plays a pivotal role in the development of glioblastoma multiforme (GBM). A central node in PI3K downstream signalling is controlled by the serine-threonine kinase AKT1. A somatic mutation affecting residue E17 of the AKT1 gene has recently been identified in breast and colon cancer. The E17K change results in constitutive AKT1 acti...
متن کاملThe Human Splice Variant Δ16HER2 Induces Rapid Tumor Onset in a Reporter Transgenic Mouse
Several transgenic mice models solidly support the hypothesis that HER2 (ERBB2) overexpression or mutation promotes tumorigenesis. Recently, a HER2 splice variant lacking exon-16 (Δ16HER2) has been detected in human breast carcinomas. This alternative protein, a normal byproduct of HER2, has an increased transforming potency compared to wild-type (wt) HER2 receptors. To examine the ability of Δ...
متن کامل