Investigation of the Structure Requirement for 5-HT6 Binding Affinity of Arylsulfonyl Derivatives: A Computational Study
نویسندگان
چکیده
5-HT(6) receptor has been implicated in a series of diseases including anxiety, depression, schizophrenia and cognitive dysfunctions. 5-HT(6) ligands have been reported to play a significant role in the treatment for central nervous system (CNS) diseases. Presently, a large series of 223 5-HT(6) ligands were studied using a combinational method by 3D-QSAR, molecular docking and molecular dynamics calculations for further improvement of potency. The optimal 3D models exhibit satisfying statistical results with r(2) (ncv), q(2) values of 0.85 and 0.50 for CoMFA, 0.81 and 0.53 for CoMSIA, respectively. Their predictive powers were validated by external test set, showing r(2) (pred) of 0.71 and 0.76. The contour maps also provide a visual representation of contributions of steric, electrostatic, hydrophobic and hydrogen bond fields as well as the prospective binding models. In addition, the agreement between 3D-QSAR, molecular docking and molecular dynamics simulation proves the rationality of the developed models. These results, we hope, may be helpful in designing novel and potential 5-HT(6) ligands.
منابع مشابه
Further studies on the binding of N1-substituted tryptamines at h5-HT6 receptors.
N(1)-Arylsulfonyl-substituted analogs of N,N-dimethyltryptamine bind at 5-HT(6) receptors. Replacement of the aryl moiety with similarly hydrophobic alkyl substituents results in decreased affinity, as does replacement of a benzenesulfonyl moiety with a benzyl group. Current findings indicate that an aryl (or substituted aryl) sulfonyl (rather than alkylsulfonyl or benzyl) moiety is optimal for...
متن کاملIn-silico Investigation of Tubulin Binding Modes of a Series of Novel Antiproliferative Spiroisoxazoline Compounds Using Docking Studies
Interference with microtubule polymerization results in cell cycle arrest leading to cell death. Colchicine is a well-known microtubule polymerization inhibitor which does so by binding to a specific site on tubulin. A set of 3',4'-bis (substituted phenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one derivatives with known antiproliferative activities were evaluated for their tubulin binding modes...
متن کاملIn-silico Investigation of Tubulin Binding Modes of a Series of Novel Antiproliferative Spiroisoxazoline Compounds Using Docking Studies
Interference with microtubule polymerization results in cell cycle arrest leading to cell death. Colchicine is a well-known microtubule polymerization inhibitor which does so by binding to a specific site on tubulin. A set of 3',4'-bis (substituted phenyl)-4'H-spiro[indene-2,5'-isoxazol]-1(3H)-one derivatives with known antiproliferative activities were evaluated for their tubulin binding modes...
متن کاملTopochemical Models for the prediction of 5-HT6 binding affinity of 3- ethyl-1H-indoles
Relationship between the topochemical indices and 5-HT6 binding affinity of 3-ethyl-1H-indoles has been investigated. Wiener’s topochemical index a distance-based topochemical descriptor, eccentric connectivity topochemical index and augmented eccentric connectivity topochemical index both adjacency-cum-distance based topochemical descriptors were used for the present investigation. A dataset c...
متن کاملA computational chemistry investigation of the intermolecular interaction between ozone and isothiocyanic acid (HNCS)
The binding energy and geometrical structure of all the possible dimeric systems of isothiocyanic acid (HNCS) with ozone have been investigated in the gas phase, theoretically. Six minima located on the singlet potential energy surface of the HNCS–ozone system at the MP2 level with binding energies (corrected with ZPE and BSSE) in the range 492.29–531.40 kcal/mol. All intermolecular interaction...
متن کامل