Mechanisms of Ammonia-synthesis Reaction Revisited with the Aid of a Novel Graph-theoretic Method for Determining Candidate Mechanisms in Deriving the Rate Law of a Catalytic Reaction

نویسندگان

  • L. T. FAN
  • B. BERTÓK
  • F. FRIEDLER
  • S. SHAFIE
چکیده

Stoichiometrically exact, candidate pathways, i.e., mechanisms, for deriving the rate law of the catalytic synthesis of ammonia have been determined through the synthesis of networks of known elementary reactions constituting such pathways. This has been undertaken to reassess the validity of available mechanisms and to explore the possible existence of additional ones for the catalytic synthesis of ammonia. Synthesizing the networks of elementary reactions is exceedingly convoluted due to the combinatorial complexity arising from the fact the number of elementary reactions involved usually far exceeds that of available elementary balances, which is only 2 for the ammonia synthesis. Such a complexity can be circumvented by the rigorous and highly efficient, graph-theoretic method adopted in the present contribution. This method follows the general framework of a mathematically exact, combinatorial method established for process-network synthesis. It is based on a unique graph-representation in terms of process graphs (P-graphs), a set of axioms, and a group of combinatorial algorithms. The method renders it possible to generate with dispatch all feasible independent reaction networks, i.e., pathways, only once. The pathways violating any first principle of either stoichiometry or thermodynamics are eliminated. Moreover, the method is capable of directly generating rapidly the acyclic combinations of independent pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Graph-theoretic Method to Identify Candidate Mechanisms for Deriving the Rate Law of a Catalytic Reaction

Stoichiometrically, exact candidate pathways or mechanisms for deriving the rate law of a catalytic or complex reaction can be determined through the synthesis of networks of plausible elementary reactions constituting such pathways. A rigorous algorithmic method is proposed for executing this synthesis, which is exceedingly convoluted due to its combinatorial complexity. Such a method for synt...

متن کامل

Kinetic Modeling of the High Temperature Water Gas Shift Reaction on a Novel Fe-Cr Nanocatalyst by Using Various Kinetic Mechanisms

In this work the kinetic data demanded for kinetic modeling were obtained in temperatures 350, 400, 450 and 500 oC by conducting experimentations on a Fe-Cr nanocatalyst prepared from a novel method and a commercial Fe-Cr-Cu one. The collected data were subjected to kinetic modeling by using two models derived from redox and associative mechanisms as well as an empirical one. The coefficients o...

متن کامل

Synthesis and Characterization of Ru/Al2O3 Nanocatalyst for Ammonia Synthesis

Ru/Al2O3 catalysts were prepared by conventional incipient wetness impregnation as well as colloid deposition of RuCl3 precursor via in situ reduction with ethylene glycol (polyol) method on alumina support. The samples were characterized by TEM, XRD and TPR techniques. The catalytic performance tests were carried out in a fixed-bed micro-reactor under diffe...

متن کامل

Ammonia-mediated Method for One-step and Surfactant-free Synthesis of Magnetite Nanoparticles

Magnetite (Fe3O4) nanoparticles have been successfully prepared by a novel one-step and surfactant-free approach utilizing ferrous ion, as a single iron source. In this manner, the reaction occurs between two aqueous solutions via the spontaneous transfer of ammonia gas from one to another in room temperature. No ferric source or oxidizing specie, oxidation controlling and capping agents are ne...

متن کامل

Catalytic application of a novel nano-catalyst of CuO/MnO2 for the synthesis of propargylamine derivatives

In the present research, an efficient process for the synthesis of propargylamine derivatives catalyzed by a novel nanocomposite of CuO/MnO2 is reported. CuO/MnO2 nano-catalyst was synthesized by the co-precipitation process and characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction(XRD), ICP-OES and BET surface area an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001