Nonkinase activity of MLCK in elongated filopodia formation and chemotaxis of vascular smooth muscle cells toward sphingosylphosphorylcholine.

نویسندگان

  • Hong Hui Wang
  • Akio Nakamura
  • Atsushi Matsumoto
  • Shinji Yoshiyama
  • Xiaoran Qin
  • Li-Hong Ye
  • Ce Xie
  • Yue Zhang
  • Ying Gao
  • Ryoki Ishikawa
  • Kazuhiro Kohama
چکیده

The actin-myosin interaction of vascular smooth muscle cells (VSMCs) is regulated by myosin light chain kinase (MLCK), which is a fusion protein of the central catalytic domain with the N-terminal actin-binding and C-terminal myosin-binding domains. In addition to the regulatory role of kinase activity mediated by the catalytic domain, nonkinase activity that derives from both terminals is able to exert a regulatory role as reviewed by Nakamura et al. (32). We previously showed that nonkinase activity mediated the filopodia upon the stimulation by sphingosylphosphorylcholine (SPC) (25). To explore the regulatory role of nonkinase activity in chemotaxis, we constructed VSMCs where the expression of MLCK was totally abolished by using a lentivirus-mediated RNAi system. We hypothesized that the MLCK-downregulated VSMCs were unable to form filopodia and to migrate upon SPC stimulation and confirmed the hypothesis. We further constructed a kinase-inactive mutant from bovine cDNA coding wild-type (WT) MLCK by mutating the ATP-binding sites located in the catalytic domain, followed by confirming the presence (absence) of the kinase activity of WT (kinase-inactive mutant). We transfected WT and the mutant into MLCK-downregulated VSMCs. We expected that the transfected VSMCs will recover the ability to induce filopodia and chemotaxis toward SPC and found both constructs rescued the ability. Because they share the actin- and myosin-binding domains, we concluded nonkinase activity plays a major role for SPC-induced migration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracellular signal transduction for migration and actin remodeling in vascular smooth muscle cells after sphingosylphosphorylcholine stimulation.

Molecular mechanisms underlying migration of vascular smooth muscle cells (VSMCs) toward sphingosylphosphorylcholine (SPC) were analyzed in light of the hypothesis that remodeling of the actin cytoskeleton should be involved. After SPC stimulation, mitogen-activated protein kinases (MAPKs), including p38 MAPK (p38) and p42/44 MAPK (p42/44), were found to be phosphorylated. Migration of cells to...

متن کامل

Blebbistatin inhibits the chemotaxis of vascular smooth muscle cells by disrupting the myosin II-actin interaction.

Blebbistatin is a myosin II-specific inhibitor. However, the mechanism and tissue specificity of the drug are not well understood. Blebbistatin blocked the chemotaxis of vascular smooth muscle cells (VSMCs) toward sphingosylphosphorylcholine (IC(50) = 26.1 +/- 0.2 and 27.5 +/- 0.5 microM for GbaSM-4 and A7r5 cells, respectively) and platelet-derived growth factor BB (IC(50) = 32.3 +/- 0.9 and 3...

متن کامل

Malcolm Campbell and Elisabeth R . Trimble II β Muscle Cells by Protein Kinase C Modification of PI 3 K - and MAPK - Dependent Chemotaxis in Aortic Vascular Smooth

Hyperglycemia increases expression of platelet-derived growth factor (PDGF)receptor and potentiates chemotaxis to PDGF-BB in human aortic vascular smooth muscle cells (VSMCs) via PI3K and ERK/MAPK signaling pathways. The purpose of this study was to determine whether increased activation of protein kinase C (PKC) isoforms had a modulatory effect on the PI3K and ERK/MAPK pathways, control of cel...

متن کامل

Inflammation and Vascular Calcification Causing Effects of Oxidized HDL are Attenuated by Adiponectin in Human Vascular Smooth Muscle Cells

The role of oxidized high-density lipoprotein (oxHDL) and the protective effects of adiponectin in terms of vascular calcification is not well established. This study was conducted to investigate the effects of oxHDL with regards to inflammation and vascular calcification and to determine the protective role of adiponectin in attenuating the detrimental effects of oxHDL. Cell viability, mineral...

متن کامل

Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 296 5  شماره 

صفحات  -

تاریخ انتشار 2009