Correction: Human Traumatic Brain Injury Induces Autoantibody Response against Glial Fibrillary Acidic Protein and Its Breakdown Products

نویسندگان

  • Zhiqun Zhang
  • J. Susie Zoltewicz
  • Stefania Mondello
  • Kimberly J. Newsom
  • Zhihui Yang
  • Boxuan Yang
  • Firas Kobeissy
  • Joy Guingab
  • Olena Glushakova
  • Steven Robicsek
  • Shelley Heaton
  • Andras Buki
  • Julia Hannay
  • Mark S. Gold
  • Richard Rubenstein
  • Xi-chun May Lu
  • Jitendra R. Dave
  • Kara Schmid
  • Frank Tortella
  • Claudia S. Robertson
  • Kevin K. W. Wang
چکیده

The role of systemic autoimmunity in human traumatic brain injury (TBI) and other forms of brain injuries is recognized but not well understood. In this study, a systematic investigation was performed to identify serum autoantibody responses to brain-specific proteins after TBI in humans. TBI autoantibodies showed predominant immunoreactivity against a cluster of bands from 38-50 kDa on human brain immunoblots, which were identified as GFAP and GFAP breakdown products. GFAP autoantibody levels increased by 7 days after injury, and were of the IgG subtype predominantly. Results from in vitro tests and rat TBI experiments also indicated that calpain was responsible for removing the amino and carboxyl termini of GFAP to yield a 38 kDa fragment. Additionally, TBI autoantibody staining co-localized with GFAP in injured rat brain and in primary rat astrocytes. These results suggest that GFAP breakdown products persist within degenerating astrocytes in the brain. Anti-GFAP autoantibody also can enter living astroglia cells in culture and its presence appears to compromise glial cell health. TBI patients showed an average 3.77 fold increase in anti-GFAP autoantibody levels from early (0-1 days) to late (7-10 days) times post injury. Changes in autoantibody levels were negatively correlated with outcome as measured by GOS-E score at 6 months, suggesting that TBI patients with greater anti-GFAP immune-responses had worse outcomes. Due to the long lasting nature of IgG, a test to detect anti-GFAP autoantibodies is likely to prolong the temporal window for assessment of brain damage in human patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Antibodies that Detect Human GFAP after Traumatic Brain Injury

After traumatic brain injury (TBI), glial fibrillary acidic protein (GFAP) and other brain-derived proteins and their breakdown products are released into biofluids such as CSF and blood. Recently, a sandwich ELISA was constructed that measured GFAP concentrations in CSF or serum from human mild-moderate TBI patients. The goals of the present study were to characterize the same two antibodies u...

متن کامل

P 104: Effects of Human Neural Stem Cells in Cure Neuroinflammation of Traumatic Brain Injury

Traumatic brain injury (TBI) is defined as an external mechanical injury to the brain. Neuroinflammation plays a vital role in the pathophysiology of TBI. Microglia and astrocytes play a central role in the initiation and regulation of inflammation. Numerous pro-inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) and nitric oxide (NO) released by microglia. In ...

متن کامل

Measurement of the glial fibrillary acidic protein and its breakdown products GFAP-BDP biomarker for the detection of traumatic brain injury compared to computed tomography and magnetic resonance imaging.

Glial fibrillary acidic protein and its breakdown products (GFAP-BDP) are brain-specific proteins released into serum as part of the pathophysiological response after traumatic brain injury (TBI). We performed a multi-center trial to validate and characterize the use of GFAP-BDP levels in the diagnosis of intracranial injury in a broad population of patients with a positive clinical screen for ...

متن کامل

Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury

Objective(s):Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis) in several models of brain injury.Secondary injury following the primary traumatic brain injury (TBI) results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines...

متن کامل

Protective Effects of Nucleobinding-2 After Cerebral Ischemia Via ‎Modulating Bcl-2/Bax Ratio and Reducing Glial Fibrillary Acid Protein ‎Expression

Introduction: Nucleobinding-2 (NUCB2) or nesfatin-1, a newly identified anorexigenic peptide, has antioxidant, anti-inflammatory, and anti-apoptotic properties. Brain ischemia-reperfusion induces irreversible damages, especially in the hippocampus area. However, the therapeutic effects of NUCB2 have not been well investigated in cerebral ischemia. This study was designed for the first time to i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014