Theory of nonlinear rheology and yielding of dense colloidal suspensions.
نویسندگان
چکیده
A first-principles approach to the nonlinear flow of dense suspensions is presented which captures shear thinning of colloidal fluids and dynamical yielding of colloidal glasses. The advection of density fluctuations plays a central role, suppressing the caging of particles and speeding up structural relaxation. A mode coupling approach is developed to explore these effects.
منابع مشابه
Stress development, relaxation, and memory in colloidal dispersions: Transient nonlinear microrheology
Related Articles The lengths of thread-like micelles inferred from rheology J. Rheol. 56, 1363 (2012) Performance of mesoscale modeling methods for predicting rheological properties of charged polystyrene/water suspensions J. Rheol. 56, 353 (2012) Three-dimensional flow of colloidal glasses J. Rheol. 56, 259 (2012) Emergence of turbid region in startup flow of CTAB/NaSal aqueous solutions betwe...
متن کاملDense colloidal suspensions under time-dependent shear.
We consider the nonlinear rheology of dense colloidal suspensions under a time-dependent simple shear flow. Starting from the Smoluchowski equation for interacting Brownian particles advected by shearing (ignoring fluctuations in fluid velocity), we develop a formalism which enables the calculation of time-dependent, far-from-equilibrium averages. Taking shear stress as an example, we derive ex...
متن کاملNonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.
Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a...
متن کاملFirst-principles constitutive equation for suspension rheology.
Using mode-coupling theory, we derive a constitutive equation for the nonlinear rheology of dense colloidal suspensions under arbitrary time-dependent homogeneous flow. Generalizing previous results for simple shear, this allows the full tensorial structure of the theory to be identified. Macroscopic deformation measures, such as the Cauchy-Green tensors, thereby emerge. So does a direct relati...
متن کاملNon-Newtonian viscosity of interacting Brownian particles : comparison of theory and data
A recently developed first-principles approach to the non-linear rheology of dense colloidal suspensions is evaluated and its results compared to those from simulations of sheared systems close to their glass transitions. The predicted scenario of a universal transition of the structural dynamics between yielding of glasses and non-Newtonian (shear-thinning) fluid flow appears well obeyed, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 89 24 شماره
صفحات -
تاریخ انتشار 2002