Modular Neural Networks for Seismic Tomography

نویسندگان

  • D. Barráez
  • Sonia Garcia-Salicetti
  • Bernadette Dorizzi
  • M. Padrón
  • E. Ramos
چکیده

We propose in this paper a modular approach for the problem of traveltime inversion or seismic tomography. This problem consists in the inference of the velocity of wave propagation in the subsurface after an explosion has been produced at the surface, relying on such waves’ traveltimes. These traveltimes are recorded by several receivers on the surface. In the present work, we consider data synthetically generated, thanks to the use of a particular "Earth-Model". An Earth-model is a multilayered media in which each layer is homogeneous, that is, the seismic wave’s propagation velocity in each layer is constant, and each layer's thickness is different. We compare, on these synthetic data, a Multilayer Perceptron (MLP) to a modular neural architecture. We show that the modular approach is better suited for the inversion problem stated, and study the experimental conditions in which the potential of this approach is optimally exploited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SEISMIC DESIGN OF DOUBLE LAYER GRIDS BY NEURAL NETWORKS

The main contribution of the present paper is to train efficient neural networks for seismic design of double layer grids subject to multiple-earthquake loading. As the seismic analysis and design of such large scale structures require high computational efforts, employing neural network techniques substantially decreases the computational burden. Square-on-square double layer grids with the va...

متن کامل

معرفی شبکه های عصبی پیمانه ای عمیق با ساختار فضایی-زمانی دوگانه جهت بهبود بازشناسی گفتار پیوسته فارسی

In this article, growable deep modular neural networks for continuous speech recognition are introduced. These networks can be grown to implement the spatio-temporal information of the frame sequences at their input layer as well as their labels at the output layer at the same time. The trained neural network with such double spatio-temporal association structure can learn the phonetic sequence...

متن کامل

Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data

This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values.  Seismic surveying was performed next on these models. F...

متن کامل

Quantifying Sand Fraction from Seismic Attributes using Modular Artificial Neural Network

The goal of this paper is the blind prediction of reservoir property from seismic attributes for well tops guided zones. Diverse variation in the reservoir properties, vertically and laterally, shows the nonlinear and complex nature of the reservoir system. In this context, use of a single network for the prediction of reservoir characteristic for a complete well may not be good in achieving ta...

متن کامل

Application of Wavelet Neural Networks for Improving of Ionospheric Tomography Reconstruction over Iran

In this paper, a new method of ionospheric tomography is developed and evaluated based on the neural networks (NN). This new method is named ITNN. In this method, wavelet neural network (WNN) with particle swarm optimization (PSO) training algorithm is used to solve some of the ionospheric tomography problems. The results of ITNN method are compared with the residual minimization training neura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002