Lysine suppresses myofibrillar protein degradation by regulating the autophagic-lysosomal system through phosphorylation of Akt in C2C12 cells
نویسندگان
چکیده
The prevention of muscle wasting is important for maintaining quality of life, since loss of muscle mass can lead to a bedridden state and decreased resistance to diseases. The prevention of muscle wasting requires an increase in protein synthesis and a decrease in protein degradation in skeletal muscle. We previously showed that lysine (Lys) markedly suppressed myofibrillar protein degradation by inhibiting the autophagic-lysosomal system via the mammalian target of rapamycin (mTOR) and other signal molecules in C2C12 cells. In this study, we investigated the involvement of Akt and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), two regulators of autophagy, on the suppressive effects of Lys on myofibrillar protein degradation in C2C12 cells. Lys induced the phosphorylation of Akt, but the suppressive effects of Lys on myofibrillar protein degradation and autophagy were completely abolished in the presence of Akt1/2 kinase inhibitor (Akti). Lys suppressed the phosphorylation of AMPK, but this effect was also abolished by Akti. On the other hand, AMPK activation by 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside (AICAR) did not affect either Akt activity or the autophagic-lysosomal system in C2C12 cells treated with Lys. These results indicate that regulation of AMPK activity is not essential for the regulation of autophagy by Lys. Taken together, our results show that Lys suppresses myofibrillar protein degradation by the autophagic-lysosomal system through the phosphorylation of Akt in C2C12 cells.
منابع مشابه
Regulation of skeletal muscle protein degradation and synthesis by oral administration of lysine in rats.
Several catabolic diseases and unloading induce muscle mass wasting, which causes severe pathological progression in various diseases and aging. Leucine is known to attenuate muscle loss via stimulation of protein synthesis and suppression of protein degradation in skeletal muscle. The aim of this study was to investigate the effects of lysine intake on protein degradation and synthesis in skel...
متن کاملInhibition of Akt phosphorylation attenuates resistance to TNF-α cytotoxic effects in MCF-7 cells, but not in their doxorubicin resistant derivatives
Objective(s): Acquisition of TNF-α resistance plays role in the onset and growth of malignant tumors. Previous studies have demonstrated that MCF-7 cell line and its doxorubicin resistant variant MCF-7/Adr are resistant against the cytotoxic effects of TNF-α. In this study, we investigated the role of Akt activation in resistance of MCF-7 and MCF-7/Adr against TNF-α cytotoxicity. Materials and ...
متن کاملAkt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3.
Enhancer of Zeste homolog 2 (EZH2) is a methyltransferase that plays an important role in many biological processes through its ability to trimethylate lysine 27 in histone H3. Here, we show that Akt phosphorylates EZH2 at serine 21 and suppresses its methyltransferase activity by impeding EZH2 binding to histone H3, which results in a decrease of lysine 27 trimethylation and derepression of si...
متن کاملLong non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway
Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...
متن کاملInhibition of janus kinase 2 by compound AG490 suppresses the proliferation of MDA-MB-231 cells via up-regulating SARI (suppressor of AP-1, regulated by IFN)
Objective(s): The Janus kinase-signal transducers and activators of transcription signaling pathway (JAK/STAT pathway) play an important role in proliferation of breast cancer cells. Previous data showed that inhibition of STAT3 suppresses the growth of breast cancer cells, but the associated mechanisms are not well understood. This study aims to investigate the effect and associated mechanisms...
متن کامل