The molecular chaperone Hsc70 from a eurythermal marine goby exhibits temperature insensitivity during luciferase refolding assays.

نویسندگان

  • Mackenzie L Zippay
  • Sean P Place
  • Gretchen E Hofmann
چکیده

The role and function of molecular chaperones has been widely studied in model systems (e.g. yeast, Escherichia coli and cultured mammalian cells), however, comparatively little is known about the function of molecular chaperones in eurythermal ectotherms. To investigate the thermal sensitivity of molecular chaperone function in non-model ectotherms, we examined the in vitro activity of Hsc70, a constitutively expressed member of the 70-kDa heat-shock protein gene family, purified from white muscle of the eurythermal marine goby Gillichthys mirabilis. The activity of G. mirabilis Hsc70 was assessed with an in vitro refolding assay where the percent refolding of thermally denatured luciferase was monitored using a luminometer. Assays were conducted from 10-40 degrees C, a range of temperatures that is ecologically relevant for this estuarine species. The results showed that isolated Hsc70 displayed chaperone characteristics in vitro, and was relatively thermally insensitive across the range of experimental temperatures. In addition, the thermal stability of the luciferase refolding capacity of Hsc70 was relatively stable, with refolding activity occurring as high as 50 degrees C. Overall, Hsc70 from G. mirabilis displayed thermal properties in vitro that suggest that the molecular chaperone is capable of binding and chaperoning proteins at temperatures that the goby encounters in nature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Hsc70 orthologs from polar and temperate notothenioid fishes: differences in prevention of aggregation and refolding of denatured proteins.

Although a great deal is known about the cellular function of molecular chaperones in general, very little is known about the effect of temperature selection on the function of molecular chaperones in nonmodel organisms. One major unanswered question is whether orthologous variants of a molecular chaperone from differential thermally adapted species vary in their thermal responses. To address t...

متن کامل

The Human DnaJ Homologue dj2 Facilitates Mitochondrial Protein Import and Luciferase Refolding

DnaJ homologues function in cooperation with hsp70 family members in various cellular processes including intracellular protein trafficking and folding. Three human DnaJ homologues present in the cytosol have been identified: dj1 (hsp40/hdj-1), dj2 (HSDJ/hdj-2), and neuronal tissue-specific hsj1. dj1 is thought to be engaged in folding of nascent polypeptides, whereas functions of the other Dna...

متن کامل

Temperature differentially affects adenosine triphosphatase activity in Hsc70 orthologs from Antarctic and New Zealand notothenioid fishes.

To test the temperature sensitivity of molecular chaperones in poikilothermic animals, we purified the molecular chaperone Hsc70 from 2 closely related notothenioid fishes--the Antarctic species Trematomus bernacchii and the temperate New Zealand species Notothenia angustata--and characterized the effect of temperature on Hsc70 adenosine triphosphatase (ATPase) activity. Hsc70 ATPase activity w...

متن کامل

The molecular chaperone function of the secretory vesicle cysteine string proteins.

The "J" domains of eukaryotic DnaJ-like proteins specify interaction with various Hsp70s. The conserved tripeptide, HPD, present in all J domains has been shown to be important for the interaction between yeast and bacterial DnaJ/Hsp70 protein pairs. We have characterized mutations in the HPD motif of the synaptic vesicle protein cysteine-string protein (Csp). Mutation of the histidine (H43Q) o...

متن کامل

BAG-1 modulates the chaperone activity of Hsp70/Hsc70.

The 70 kDa heat shock family of molecular chaperones is essential to a variety of cellular processes, yet it is unclear how these proteins are regulated in vivo. We present evidence that the protein BAG-1 is a potential modulator of the molecular chaperones, Hsp70 and Hsc70. BAG-1 binds to the ATPase domain of Hsp70 and Hsc70, without requirement for their carboxy-terminal peptide-binding domai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comparative biochemistry and physiology. Part A, Molecular & integrative physiology

دوره 138 1  شماره 

صفحات  -

تاریخ انتشار 2004