Efficient regularization with wavelet sparsity constraints in photoacoustic tomography
نویسنده
چکیده
In this paper, we consider the reconstruction problem of photoacoustic tomography (PAT) with a flat observation surface. We develop a direct reconstruction method that employs regularization with wavelet sparsity constraints. To that end, we derive a wavelet-vaguelette decomposition (WVD) for the PAT forward operator and a corresponding explicit reconstruction formula in the case of exact data. In the case of noisy data, we combine the WVD reconstruction formula with soft-thresholding, which yields a spatially adaptive estimation method. We demonstrate that our method is statistically optimal for white random noise if the unknown function is assumed to lie in any Besov-ball. We present generalizations of this approach and, in particular, we discuss the combination of PAT-vaguelette soft-thresholding with a total variation (TV) prior. We also provide an efficient implementation of the PAT-vaguelette transform that leads to fast image reconstruction algorithms supported by numerical results.
منابع مشابه
3D Inversion of Magnetic Data through Wavelet based Regularization Method
This study deals with the 3D recovering of magnetic susceptibility model by incorporating the sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp ...
متن کاملWavelet shrinkage using adaptive structured sparsity constraints
Structured sparsity approaches have recently received much attention in the statistics, machine learning, and signal processing communities. A common strategy is to exploit or assume prior information about structural dependencies inherent in the data; the solution is encouraged to behave as such by the inclusion of an appropriate regularization term which enforces structured sparsity constrain...
متن کاملTomographic inversion using l1-norm regularization of wavelet coefficients
We propose the use of l1 regularization in a wavelet basis for the solution of linearized seismic tomography problems Am = d, allowing for the possibility of sharp discontinuities superimposed on a smoothly varying background. An iterative method is used to find a sparse solution m that contains no more fine-scale structure than is necessary to fit the data d to within its assigned errors. keyw...
متن کاملParallel Mri Reconstruction Using Svd-and- Laplacian Transform Based Sparsity Regularization
The SENSE model with sparsity regularization acts as an unconstrained minimization problem to reconstruct the MRI, which obtain better reconstruction results than the traditional SENSE. To implement the sparsity constraints, discrete wavelet transform (DWT) and total variation (TV) are common exploited together to sparsify the MR image. In this paper, a novel sparsifying transform based on the ...
متن کاملWavelet Frame Based Algorithm for 3D Reconstruction in Electron Microscopy
In electron microscopy, 3D reconstruction is one key component in many computer-ized techniques for solving 3D structures of large protein assemblies using electron microscopy imagesof particles. Main challenges in 3D reconstruction include very low signal-to-noise ratio and very largescale of data sets involved in the computation. Motivated by the recent advances of sparsity-based<...
متن کامل