Activation and desensitization induce distinct conformational changes at the extracellular-transmembrane domain interface of the glycine receptor.
نویسندگان
چکیده
Most ligand-gated channels exhibit desensitization, which is the progressive fading of ionic current in the prolonged presence of agonist. This process involves conformational changes that close the channel despite continued agonist binding. Despite the physiological and pathological importance of desensitization, little is known about the conformational changes that underlie this process in any Cys-loop ion channel receptor. Here we employed voltage clamp fluorometry to identify conformational changes that occur with a similar time course as the current desensitization rate in both slow- and fast-desensitizing α1 glycine receptor chloride channels. Voltage clamp fluorometry provides a direct indication of conformational changes that occur in the immediate vicinity of residues labeled with environmentally sensitive fluorophores. We compared the rates of current desensitization and fluorescence changes at nine labeled extracellular sites in both wild type slow-desensitizing and mutated (A248L) fast-desensitizing glycine receptors. As labels attached to three sites at the interface between the ligand binding domain and transmembrane domain reported fluorescence responses that changed in parallel with the current desensitization rate, we concluded that they experienced local conformational changes associated with desensitization. These labeled sites included A52C in loop 2, Q219C in the pre-M1 domain, and M227C in the M1 domain. Activation and desensitization were accompanied by physically distinct conformational changes at each labeled site. Because activation is mediated by a specific reorganization of molecular interactions at the extracellular-transmembrane domain interface, we propose that desensitization is mediated by a distinct set of conformational changes that prevents this reorganization from occurring, thereby favoring channel closure.
منابع مشابه
In silico prediction of B cell epitopes of the extracellular domain of insulin-like growth factor-1 receptor
The insulin-like growth factor-1 receptor (IGF-1R) is a transmembrane receptor with tyrosine kinase activity. The receptor plays a critical role in cancer. Using monoclonal antibodies (MAbs) against the IGF-1R, typically blocks ligand binding and enhances down-regulation of the cell-surface IGF-1R. Some MAbs such as cixutumumab are under clinical trial investigation. Targeting multiple distinct...
متن کاملIntermediate closed state for glycine receptor function revealed by cysteine cross-linking.
Pentameric ligand-gated ion channels (pLGICs) mediate signal transmission by coupling the binding of extracellular ligands to the opening of their ion channel. Agonist binding elicits activation and desensitization of pLGICs, through several conformational states, that are, thus far, incompletely characterized at the structural level. We previously reported for GLIC, a prokaryotic pLGIC, that c...
متن کاملProbing N-methyl-D-aspartate receptor desensitization with the substituted-cysteine accessibility method.
Several forms of macroscopic N-methyl-D-aspartate (NMDA) receptor desensitization affect the amplitude and duration of postsynaptic responses. In addition to its functional significance, desensitization provides one means to examine the conformational coupling of ligand binding to channel gating. Segments flanking the ligand binding domain in the extracellular N terminus of the NMDA receptor NR...
متن کاملLigand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain.
Understanding the activation mechanism of Cys loop ion channel receptors is key to understanding their physiological and pharmacological properties under normal and pathological conditions. The ligand-binding domains of these receptors comprise inner and outer beta-sheets and structural studies indicate that channel opening is accompanied by conformational rearrangements in both beta-sheets. In...
متن کاملKinetics of conformational changes revealed by voltage-clamp fluorometry give insight to desensitization at ATP-gated human P2X1 receptors.
ATP acts as an extracellular signaling molecule at cell-surface P2X receptors, mediating a variety of important physiologic and pathophysiologic roles. Homomeric P2X1 receptors open on binding ATP and then transition to an ATP-bound closed, desensitized state that requires an agonist-free washout period to recover. Voltage-clamp fluorometry was used to record ion channel activity and conformati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 286 44 شماره
صفحات -
تاریخ انتشار 2011