The energetics and structure of nickel clusters: Size dependence
نویسندگان
چکیده
The energetics of nickel clusters over a broad size range are explored within the context of the many-body potentials obtained via the embedded atom method. Unconstrained local minimum energy configurations are found for single crystal clusters consisting of various truncations of the cube or octahedron, with and without ( 110) faces, as well as some monotwinnings of these. We also examine multitwinned structures such as icosahedra and various truncations of the decahedron, such as those of Ino and Marks. These clusters range in size from 142 to over 5000 atoms. As in most such previous studies, such as those on Lennard-Jones systems, we find that icosahedral clusters are favored for the smallest cluster sizes and that Marks’ decahedra are favored for intermediate sizes (all our atomic systems larger than about 2300 atoms). Of course very large clusters will be single crystal face-centered-cubic (fee) polyhedra: the onset of optimally stable single-crystal nickel clusters is estimated to occur at 17 000 atoms. We find, via comparisons to results obtained via atomistic calculations, that simple macroscopic expressions using accurate surface, strain, and twinning energies can usefully predict energy differences between different structures even for clusters of much smaller size than expected. These expressions can be used to assess the relative energetic merits of various structural motifs and their dependence on cluster size.
منابع مشابه
Molecular-dynamics Simulations of Nickel Clusters
Structural stability and energetics of nickel clusters, NiN (N = 3−459), have been investigated by molecular-dynamics simulations. A size-dependent empirical model potential energy function has been used in the simulations. Stable structures of the microclusters with sizes N = 3 − 55 and clusters generated from fcc crystal structure with sizes N = 79 − 459 have been determined by molecular-dyna...
متن کاملSize Evolution Study of the Electronic and Magnetic Properties of MgO Nanoclusters
Magnesium oxide nanoclusters have attracted much attention due to their potential applications to catalysis and novel optoelectronic materials. In the present study, we have studied the electronic and magnetic properties of the stoichiometric magnesium oxide nanoclusters (MgO)n for n = 2-20. Although the binding energy increases with the size of the cluster, it re...
متن کاملInvestigation of Nickle nanoclusters properties by density functional theory
Clusters play important role for understanding and transferring microscopic to macroscopic properties.Geometric and electron properties of Small nickel clusters up to the tetramer has been investigated by Density Functional Theory (DFT). Raising the number of nickel clusters atoms were indicated decreasing the average equilibrium (Ni-Ni) distance of atoms and also the binding energy of per atom...
متن کاملSize Dependence of the Energetics of Electron Attachment to Large Water Clusters
The size dependence of the binding energy of a localized excess electron in large water clusters originates from long-range polarization interactions. The vertical and adiabatic binding energies of compact, interior excess electron states in (H20); clusters, obtained from quantum path-integral moleculardynamics simulations, exhibit a linear dependence on n I/‘, in quantitative agreement with th...
متن کاملSynthesis and Characterization of Nickel Zinc Ferrite Nanoparticles
In this research nickel zinc ferrite nanoparticles with composition of Ni1-xZnxFe2O4 (where x=0, 0.3, 0.7, 1) were synthesized by a sol-gel method at 600 °C for 5 hours. The structure of nanoparticles was studied using X-ray diffraction pattern. The lattice parameter of ferrite nanoparticles was calculated and indicates lattice constant of nanoparticl...
متن کامل