Manganese causes differential regulation of glutamate transporter (GLAST) taurine transporter and metallothionein in cultured rat astrocytes.
نویسندگان
چکیده
Neurotoxicity due to excessive brain manganese (Mn) can occur due to environmental (air pollution, soil, water) and/ or metabolic aberrations (decreased biliary excretion). Manganese is associated with oxidative stress, as well as alterations in neurotransmitter metabolism with concurrent neurobehavioral deficits. Based on the few existing studies that have examined brain regional [Mn], it is likely that in pathological conditions it can reach 100-500 microM. Amino acid (e.g. aspartate, glutamate, taurine), as well as divalent metal (e.g. zinc, manganese) concentrations are regulated by astrocytes in the brain. Recently, it has been reported that cultured rat primary astrocytes exposed to Mn displayed decreased glutamate uptake, thereby, increasing the excitotoxic potential of glutamate. Since the neurotoxic mechanism(s) Mn employs in terms of glutamate metabolism is unknown, a primary goal of this study was to link altered glutamate uptake in Mn exposed astrocytes to alterations in glutamate transporter message. Further, we wanted to examine the gene expression of metallothionein (MT) and taurine transporter (tau-T) as markers of Mn exposure. Glutamate uptake was decreased by nearly 40% in accordance with a 48% decrease in glutamate/aspartate transporter (GLAST) mRNA. Taurine uptake was unaffected by Mn exposure even though tau-T mRNA increased by 123%. MT mRNA decreased in these Mn exposed astrocytes possibly due to altered metal metabolism, although this was not examined. These data show that glutamate and taurine transport in Mn exposed astrocytes are temporally different.
منابع مشابه
Glutamate/aspartate transporter (GLAST), taurine transporter and metallothionein mRNA levels are differentially altered in astrocytes exposed to manganese chloride, manganese phosphate or manganese sulfate.
Manganese (Mn)-induced neurotoxicity can occur due to environmental exposure (air pollution, soil, water) and/or metabolic aberrations (decreased biliary excretion). High brain manganese levels lead to oxidative stress, as well as alterations in neurotransmitter metabolism with concurrent neurobehavioral deficits. Based on the few existing studies that have examined brain regional Mn concentrat...
متن کاملManganese neurotoxicity and GABA / glutamate interactions
Brain extracellular concentrations of amino acids (e.g. aspartate, glutamate, taurine) and divalent metals (e.g. zinc, copper, manganese) are primarily regulated by astrocytes. Adequate glutamate homeostasis is essential for the normal functioning of the central nervous system (CNS). Glutamate is of central importance for nitrogen metabolism and, along with aspartate, is the primary mediator of...
متن کاملTransient upregulation of the glial glutamate transporter GLAST in response to fibroblast growth factor, insulin-like growth factor and epidermal growth factor in cultured astrocytes.
Although expression of the glial glutamate transporter GLAST is tightly regulated during development and under pathophysiological conditions, little is known about endogenous modulators of GLAST expression. Because growth factors are generally believed to regulate glial functions, we addressed their possible contribution to GLAST regulation in cultured rat astrocytes. Of the six growth factors ...
متن کاملDifferential Regulation of Glutamate Transporter Subtypes by Pro-Inflammatory Cytokine TNF-α in Cortical Astrocytes from a Rat Model of Amyotrophic Lateral Sclerosis
Dysregulation of the astroglial glutamate transporters GLAST and GLT-1 has been implicated in several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) where a loss of GLT-1 protein expression and activity is reported. Furthermore, the two principal C-terminal splice variants of GLT-1 (namely GLT-1a and GLT-1b) show altered expression ratio in animal models of this dise...
متن کاملNeuronal regulation of glutamate transporter subtype expression in astrocytes.
GLT-1, GLAST, and EAAC1 are high-affinity, Na(+)-dependent glutamate transporters identified in rat forebrain. The expression of these transporter subtypes was characterized in three preparations: undifferentiated rat cortical astrocyte cultures, astrocytes cocultured with cortical neurons, and astrocyte cultures differentiated with dibutyryl cyclic AMP (dBcAMP). The undifferentiated astrocyte ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurotoxicology
دوره 23 4-5 شماره
صفحات -
تاریخ انتشار 2002