Effects of native and oxidized low density lipoproteins on formation and inactivation of endothelium-derived relaxing factor.

نویسندگان

  • J Galle
  • A Mülsch
  • R Busse
  • E Bassenge
چکیده

The influence of native (N-) and oxidized (Ox-) low density lipoproteins (LDLs) on endothelium-dependent vasomotion is still controversial. We investigated the short-term effects of N-LDL and Ox-LDL on the formation of endothelium-derived relaxing factor (EDRF) in native and cultured endothelial cells and on its inactivation after release from the cells. N-LDL was isolated from fresh human plasma via sequential ultracentrifugation and oxidized by incubation with Cu2+. EDRF released from cultured endothelial cells was inactivated by both N-LDL and Ox-LDL (1 mg/ml) as detected in a bioassay system. N-LDL reduced the EDRF-mediated vasodilations of the detector segments by 38.5 +/- 5.3%, and Ox-LDL, by 55.5 +/- 4.6%. The effects of lipoproteins on EDRF formation were studied in cultured endothelial cells preincubated with either N-LDL or Ox-LDL (1 mg/ml for 1 hour) and stimulated for EDRF release with bradykinin after washout of the lipoproteins. EDRF was assessed by measuring its stimulatory effect on the activity of a purified, soluble guanylate cyclase. Both N-LDL and Ox-LDL did not reduce the bradykinin-induced EDRF formation. Consistent with this finding, acetylcholine-induced, EDRF-mediated dilations of intact rabbit femoral artery segments were not impaired by luminal exposure to N-LDL or Ox-LDL (1 mg/ml for 1 hour). However, these relaxations were significantly reduced by preincubation of aortic ring preparations with the same concentrations of the same charges of N-LDL and Ox-LDL. In conclusion, neither N-LDL nor Ox-LDL acutely impairs the formation of EDRF but does inactivate EDRF after its release from endothelial cells.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidized Low Density Lipoproteins

The direct vasoactive effects of native and oxidatively modified low density lipoproteins as well as their effects on endothelium-dependent relaxations to 5-hydroxytryptamine were studied in isolated rings of pig right coronary artery. Slowly developing contractions were caused by native low density lipoproteins (100 gg protein/ml). The contractions were more pronounced in the absence than in t...

متن کامل

The Possible Involvement of Nitric Oxide/Endothelium Derived Relaxing Factor in Atropine-Induced Vasorelaxation

Atropine has been used to block cholinergic neurotransmission in basic research. Large doses of atropine cause vasodilation of the blood vessels in the skin. This effect is apparently unconnected with the antimuscarinic activity of atropine and seems to be due to a direct action on the blood vessels. It has been suggested that atropine blocks muscarinic receptors at low doses and it induces th...

متن کامل

Inactivation of endothelial derived relaxing factor by oxidized lipoproteins.

Endothelial cell derived relaxing factor (EDRF) mediated relaxation of blood vessels is impaired in vessels exposed to lipoproteins in vitro and in arteries of hyperlipidemic humans and animals. To investigate the mechanism by which lipoproteins impair the effects of EDRF, which is likely nitric oxide (NO) or a related molecule, we have bioassayed EDRF/NO activity by measuring its ability to in...

متن کامل

Cyclosporine and oxidized lipoproteins affect vascular reactivity. Influence of the endothelium.

Cyclosporine and in particular oxidatively modified low density lipoproteins can both exert direct vasoconstricting effects. We hypothesized that coincubation of arteries with low density lipoproteins and cyclosporine would enhance their respective influence on vascular tone. Therefore, we investigated vascular reactivity of isolated intact rabbit renal arteries preincubated with cyclosporine i...

متن کامل

Oxidized lipoproteins inhibit endothelium-dependent vasodilation. Effects of pressure and high-density lipoprotein.

Hypertension and atherogenic low-density lipoproteins cause attenuation of endothelium-dependent dilations in vivo. We investigated a potential interference of high transmural pressure with the effects of low-density lipoproteins on endothelium-dependent dilation in vitro. Furthermore, we determined whether high-density lipoproteins preserve endothelial function. Endothelium-intact rabbit renal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis and thrombosis : a journal of vascular biology

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 1991