A note on collocation methods for Volterra integro-differential equations with weakly singular kernels
نویسنده
چکیده
will be employed in the analysis of the principle properties of the collocation approximations; the extension to nonlinear equations is straightforward (cf. [1, p. 225]). High-order numerical methods for VIDEs with weakly singular kernels may be found in [1,2,6,7,8]. In this note we shall consider collocation methods for VIDE (1.1), based on Brunner's approach [1]. The following method and notation were introduced in [1]. Collocation methods generate, as approximations to the solution of (1.1), elements of the polynomial spline space
منابع مشابه
Numerical solution of weakly singular Volterra integro-differential equations with change of variables
We discuss a possibility to construct high order methods on uniform or mildly graded grids for the numerical solution of linear Volterra integro-differential equations with weakly singular or other nonsmooth kernels. Using an integral equation reformulation of the initial value problem, we apply to it a smoothing transformation so that the exact solution of the resulting equation does not conta...
متن کاملSupergeometric Convergence of Spectral Collocation Methods for Weakly Singular Volterra and Fredholm Integral Equations with Smooth Solutions
A spectral collocation method is proposed to solve Volterra or Fredholm integral equations with weakly singular kernels and corresponding integro-differential equations by virtue of some identities. For a class of functions that satisfy certain regularity conditions on a bounded domain, we obtain geometric or supergeometric convergence rate for both types of equations. Numerical results confirm...
متن کاملWavelet-based numerical method for solving fractional integro-differential equation with a weakly singular kernel
This paper describes and compares application of wavelet basis and Block-Pulse functions (BPFs) for solving fractional integro-differential equation (FIDE) with a weakly singular kernel. First, a collocation method based on Haar wavelets (HW), Legendre wavelet (LW), Chebyshev wavelets (CHW), second kind Chebyshev wavelets (SKCHW), Cos and Sin wavelets (CASW) and BPFs are presented f...
متن کاملCOLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS
In this paper it is shown that the use of uniform meshes leads to optimal convergence rates provided that the analytical solutions of a particular class of Fredholm-Volterra integral equations (FVIEs) are smooth.
متن کاملApproximate solution of system of nonlinear Volterra integro-differential equations by using Bernstein collocation method
This paper presents a numerical matrix method based on Bernstein polynomials (BPs) for approximate the solution of a system of m-th order nonlinear Volterra integro-differential equations under initial conditions. The approach is based on operational matrices of BPs. Using the collocation points,this approach reduces the systems of Volterra integro-differential equations associated with the giv...
متن کامل