Endoplasmic Reticulum of Mung Bean Cotyledons: ACCUMULATION DURING SEED MATURATION AND CATABOLISM DURING SEEDLING GROWTH.

نویسندگان

  • N R Gilkes
  • M J Chrispeels
چکیده

Homogenates of mung bean cotyledons were subjected to equilibrium density centrifugation on linear sucrose gradients and the positions of the various organelles determined by assay of marker enzymes. Measurement of phospholipid distribution on such gradients showed that the major peak of phospholipid at a density of 1.11 to 1.13 grams per cubic centimeter coincided with the position of the endoplasmic reticulum (ER), confirming ultrastructural evidence that storage parenchyma cells are rich in ER. Germination and seedling growth were accompanied by a rapid decline in ER-associated phospholipid but a marked increase in the ER marker enzyme NADH cytochrome c reductase. Similar experiments with developing seeds indicated that the amount of ER-associated phospholipid increases during cotyledon expansion reaching a maximum during seed maturation. There was no subsequent decline during seed desiccation, instead ER-associated phospholipid levels were maintained in the dry seed until germination when catabolism was initiated 12 to 24 hours after the start of imbibition. This timing indicates that the observed ER breakdown is not an expression of the overall senescence of the cotyledons, but may represent the dismantling of the extensive rough ER used for reserve protein synthesis during cotyledon development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lysine metabolism is concurrently regulated by synthesis and catabolism in both reproductive and vegetative tissues.

The functional role of Lys catabolism in balancing Lys levels in plants has only been directly demonstrated in developing seeds. Seed-specific expression of a bacterial feedback-insensitive dihydrodipicolinate synthase (DHPS) in an Arabidopsis knockout mutant of the AtLKR/SDH gene that regulates Lys catabolism synergistically boosted Lys accumulation in mature seeds, but it also severely reduce...

متن کامل

Soybean LEC2 Regulates Subsets of Genes Involved in Controlling the Biosynthesis and Catabolism of Seed Storage Substances and Seed Development

Soybean is an important oilseed crop and major dietary protein resource, yet the molecular processes and regulatory mechanisms involved in biosynthesis of seed storage substances are not fully understood. The B3 domain transcription factor (TF) LEC2 essentially regulates embryo development and seed maturation in other plants, but is not functionally characterized in soybean. Here, we characteri...

متن کامل

Redistribution of cytoplasmic components during germinal vesicle breakdown in starfish oocytes.

The starfish oocyte is relatively clear optically, and its nucleus, termed the germinal vesicle, is large. These characteristics allowed studies by confocal microscopy of germinal vesicle breakdown during maturation in living oocytes. Three fluorescent probes for cytoplasmic components were used: fluorescein 70 kDa dextran, which does not cross the nuclear pore of immature oocytes and probably ...

متن کامل

Germinal vesicle breakdown in the Xenopus laevis oocyte: description of a transient microtubular structure.

During progesterone-induced meiotic maturation of Xenopus oocytes in vitro, 7 morphological stages were defined. Using cytological analysis, nuclear breakdown was divided into three stages. Stage 1 corresponded to basal germinal vesicle breakdown. Stage 2 was characterized by the advent and development of a fibrillar network formed by microtubules at the basal part of the nucleus. Below, a lame...

متن کامل

Storage and mobilization as antagonistic functional constraints on seed storage globulin evolution.

When seeds germinate nearly all the proteins are degraded in senescing storage tissue cells. All these proteins act as amino acid reserves which are mobilized to nourish the seedling. Nevertheless, the major amount of the seeds' protein reserve consists of a few enzymatically inactive, abundant, genuine storage proteins. In their metabolism the conflicting processes of biosynthesis, protein tur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 65 4  شماره 

صفحات  -

تاریخ انتشار 1980