The Quantum Schur Transform: I. Efficient Qudit Circuits
نویسنده
چکیده
We present an efficient family of quantum circuits for a fundamental primitive in quantum information theory, the Schur transform. The Schur transform on n d dimensional quantum systems is a transform between a standard computational basis to a labelling related to the representation theory of the symmetric and unitary groups. If we desire to implement the Schur transform to an accuracy of ǫ, then our circuit construction uses a number of gates which is polynomial in n, d and log(ǫ). The important insights we use to perform this construction are the selection of the appropriate subgroup adapted basis and the Wigner-Eckart theorem. Our efficient circuit construction renders numerous protocols in quantum information theory computationally tractable and is an important new efficient quantum circuit family which goes significantly beyond the standard paradigm of the quantum Fourier transform.
منابع مشابه
Efficient quantum circuits for Schur and Clebsch-Gordan transforms.
The Schur basis on n d-dimensional quantum systems is a generalization of the total angular momentum basis that is useful for exploiting symmetry under permutations or collective unitary rotations. We present efficient {size poly[n,d,log(1/epsilon)] for accuracy epsilon} quantum circuits for the Schur transform, which is the change of basis between the computational and the Schur bases. Our cir...
متن کاملEfficient circuits for exact-universal computationwith qudits
This paper concerns the efficient implementation of quantum circuits for qudits. We show that controlled two-qudit gates can be implemented without ancillas and prove that the gate library containing arbitrary local unitaries and one two-qudit gate, CINC, is exact-universal. A recent paper [S.Bullock, D.O’Leary, and G.K. Brennen, Phys. Rev. Lett. 94, 230502 (2005)] describes quantum circuits fo...
متن کاملEfficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملEfficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملProperties of Nonnegative Hermitian Matrices and New Entropic Inequalities for Noncomposite Quantum Systems
We consider the probability distributions, spin (qudit)-state tomograms and density matrices of quantum states, and their information characteristics, such as Shannon and von Neumann entropies and q-entropies, from the viewpoints of both well-known purely mathematical features of nonnegative numbers and nonnegative matrices and their physical characteristics, such as entanglement and other quan...
متن کامل