On the Implementation of Integer and Non-Integer Sampling Rate Conversion
نویسنده
چکیده
The main focus in this thesis is on the aspects related to the implementation of integer and non-integer sampling rate conversion (SRC). SRC is used in many communication and signal processing applications where two signals or systems having different sampling rates need to be interconnected. There are two basic approaches to deal with this problem. The first is to convert the signal to analog and then re-sample it at the desired rate. In the second approach, digital signal processing techniques are utilized to compute values of the new samples from the existing ones. The former approach is hardly used since the latter one introduces less noise and distortion. However, the implementation complexity for the second approach varies for different types of conversion factors. In this work, the second approach for SRC is considered and its implementation details are explored. The conversion factor in general can be an integer, a ratio of two integers, or an irrational number. The SRC by an irrational numbers is impractical and is generally stated for the completeness. They are usually approximated by some rational factor. The performance of decimators and interpolators is mainly determined by the filters, which are there to suppress aliasing effects or removing unwanted images. There are many approaches for the implementation of decimation and interpolation filters, and cascaded integrator comb (CIC) filters are one of them. CIC filters are most commonly used in the case of integer sampling rate conversions and often preferred due to their simplicity, hardware efficiency, and relatively good anti-aliasing (anti-imaging) characteristics for the first (last) stage of a decimation (interpolation). The multiplierless nature, which generally yields to low power consumption, makes CIC filters well suited for performing conversion at higher rate. Since these filters operate at the maximum sampling frequency, therefore, are critical with respect to power consumption. It is therefore necessary to have an accurate and efficient ways and approaches that could be utilized to estimate the power consumption and the important factors that are contributing to it. Switching activity is one such factor. To have a high-level estimate of dynamic power consumption, switching activity equations in CIC filters are derived, which may then be used to have an estimate of the dynamic power consumption. The modeling of leakage power is also included, which is an important parameter to consider since the input sampling rate may differ several orders of magnitude. These power estimates at higher level can then be used as a feed-back while exploring multiple alternatives. Sampling rate conversion is a typical example where it is required to determine the values between existing samples. The computation of a value between existing samples can alternatively be regarded as delaying the underlying signal by a fractional sampling period. The fractional-delay filters are used in this context to provide a fractional-delay adjustable to any desired value and are therefore suitable for both integer and non-integer factors. The structure that is used in the efficient implementation of a fractional-delay filter is know as Farrow structure or its modifications. The main advantage of the Farrow struc-
منابع مشابه
Sampling Rate Conversion in the Discrete Linear Canonical Transform Domain
Sampling rate conversion (SRC) is one of important issues in modern sampling theory. It can be realized by up-sampling, filtering, and down-sampling operations, which need large complexity. Although some efficient algorithms have been presented to do the sampling rate conversion, they all need to compute the N-point original signal to obtain the up-sampling or the down-sampling signal in the tim...
متن کاملAnalysis of Multistage Sampling Rate Conversion for Potential Optimal Factorization
Digital multistage sampling rate conversion has many engineering applications in fields of signal and image processing, which is to adapt the sampling rates to the flows of diverse audio and video signals. The FIR (Finite Impulse Response) polyphase sampling rate converter is one of typical schemes that are suitable for interpolation or decimation by an integer factor. It also guarantees the st...
متن کاملCascades of Polynomial-based and Fir Filters for Sampling Rate Conversion
where Fin = 1/Tin (Tin) and Fout = 1/Tout (Tout) are the original input sampling rate (period) and the sampling rate (period) after the conversion, respectively. The sampling rate conversion can be divided into two general cases. For R < 1, the original sampling rate is reduced and this process is known as decimation. For R > 1, the original sampling rate is increased and this process is known ...
متن کاملAIOSC: Analytical Integer Word-length Optimization based on System Characteristics for Recursive Fixed-point LTI Systems
The integer word-length optimization known as range analysis (RA) of the fixed-point designs is a challenging problem in high level synthesis and optimization of linear-time-invariant (LTI) systems. The analysis has significant effects on the resource usage, accuracy and efficiency of the final implementation, as well as the optimization time. Conventional methods in recursive LTI systems suffe...
متن کاملStochastic Short-Term Hydro-Thermal Scheduling Based on Mixed Integer Programming with Volatile Wind Power Generation
This study addresses a stochastic structure for generation companies (GenCoʼs) that participate in hydro-thermal self-scheduling with a wind power plant on short-term scheduling for simultaneous reserve energy and energy market. In stochastic scheduling of HTSS with a wind power plant, in addition to various types of uncertainties such as energy price, spinning /non-spinning reserve prices, unc...
متن کامل