Risk Estimators for Choosing Regularization Parameters in Ill-Posed Problems - Properties and Limitations

نویسندگان

  • Felix Lucka
  • Katharina Proksch
  • Christoph Brune
  • Nicolai Bissantz
  • Martin Burger
  • Holger Dette
  • Frank Wübbeling
چکیده

This paper discusses the properties of certain risk estimators recently proposed to choose regularization parameters in ill-posed problems. A simple approach is Stein’s unbiased risk estimator (SURE), which estimates the risk in the data space, while a recent modification (GSURE) estimates the risk in the space of the unknown variable. It seems intuitive that the latter is more appropriate for ill-posed problems, since the properties in the data space do not tell much about the quality of the reconstruction. We provide theoretical studies of both estimators for linear Tikhonov regularization in a finite dimensional setting and estimate the quality of the risk estimators, which also leads to asymptotic convergence results as the dimension of the problem tends to infinity. Unlike previous papers, who studied image processing problems with a very low degree of ill-posedness, we are interested in the behavior of the risk estimators for increasing illposedness. Interestingly, our theoretical results indicate that the quality of the GSURE risk can deteriorate asymptotically for ill-posed problems, which is confirmed by a detailed numerical study. The latter shows that in many cases the GSURE estimator leads to extremely small regularization parameters, which obviously cannot stabilize the reconstruction. Similar but less severe issues with respect to robustness also appear for the SURE estimator, which in comparison to the rather conservative discrepancy principle leads to the conclusion that regularization parameter choice based on unbiased risk estimation is not a reliable procedure for ill-posed problems. A similar numerical study for sparsity regularization demonstrates that the same issue appears in nonlinear variational regularization approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

روش‌های تجزیه مقادیر منفرد منقطع و تیخونوف تعمیم‌یافته در پایدارسازی مسئله انتقال به سمت پائین

The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...

متن کامل

Near-Optimal Regularization Parameters for Applications in Computer Vision

Computer vision requires the solution of many ill-posed problems such as optical flow, structure from motion, shape from shading, surface reconstruction, image restoration and edge detection. Regularization is a popular method to solve ill-posed problems, in which the solution is sought by minimization of a sum of two weighted terms, one measuring the error arising from the ill-posed model, the...

متن کامل

An Analysis of the Zero-Crossing Method for Choosing Regularization Parameters

Solving discrete ill-posed problems via Tikhonov regularization introduces the problem of determining a regularization parameter. There are several methods available for choosing such a parameter, yet, in general, the uniqueness of this choice is an open question. Two empirical methods for determining a regularization parameter (which appear in the biomedical engineering literature) are the com...

متن کامل

Regularization Parameter Selection in Discrete Ill-Posed Problems - The Use of the U-Curve

To obtain smooth solutions to ill-posed problems, the standard Tikhonov regularization method is most often used. For the practical choice of the regularization parameter α we can then employ the well-known L-curve criterion, based on the L-curve which is a plot of the norm of the regularized solution versus the norm of the corresponding residual for all valid regularization parameters. This pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017