L-Band Polarimetric Target Decomposition of Mangroves of the Rufiji Delta, Tanzania
نویسندگان
چکیده
The mangroves of the Rufiji Delta are an important habitat and resource. The mangrove forest reserve is home to an indigenous population and has been under pressure from an influx of migrants from the landward side of the delta. Timely and effective forest management is needed to preserve the delta and mangrove forest. Here, we investigate the potential of polarimetric target decomposition for mangrove forest monitoring and analysis. Using three ALOS PALSAR images, we show that L-band polarimetry is capable of mapping mangrove dynamics and is sensitive to stand structure and the hydro-geomorphology of stands. Entropy-alpha-anisotropy and incoherent target decompositions provided valuable measures of scattering behavior related to forest structure. Little difference was found between Yamaguchi and Arii decompositions, despite the conceptual differences between these models. Using these models, we were able to differentiate the scattering behavior of the four main species found in the delta, though classification was impractical due to the lack of pure stands. Scattering differences related to season were attributed primarily to differences in ground moisture or inundation. This is the first time mangrove species have been identified by their scattering behavior in L-band polarimetric data. These results suggest higher resolution L-band quad-polarized imagery, such as from PALSAR-2, may be a powerful tool for mangrove species mapping.
منابع مشابه
Causes and Perceptions of Environmental Change in the Mangroves of Rufiji Delta, Tanzania Implications for Sustainable Livelihood and Conservation
Mangroves are ecosystems with enormous ecological importance, supporting both terrestrial and marine food webs. They provide ecosystem services (e.g. food, medicines, fuel, constructing material) to communities near and far. Despite their importance, mangrove areas are facing numerous threats. Based on neo-Malthusian narratives, population growth is an alleged main cause of mangrove degradation...
متن کاملComparison of Methods for Target Detection and Applications Using Polarimetric SAR Image
Polarimetric SAR (PolSAR) is sensitive to the orientation and characters of object and polarimetry could yield several new descriptive radar target detection parameters and lead to the improvement of radar detection algorithms. Target decomposition theory has been used for information extraction in PolSAR, and it can also explore the phase message in PolSAR data. In this paper, a comparison of ...
متن کاملPolarimetric properties of burned forest areas at C- and L-band
Fully polarimetric Cand L-band synthetic aperture radar (SAR) data have been investigated to determine the relationship between polarimetric target decomposition components and forest burn severity over two sites located in a Mediterranean environment. The dependence of the polarimetric decomposition metrics on SAR acquisition geometry and environmental conditions was also analyzed at C-band. M...
متن کاملImprovement of Biomass Estimation in Forest Areas based on Polarimetric Parameters Optimization of SETHI airborne Data using Particle Swarm Optimization Method
Estimation of forest biomass has received much attention in recent decades. Airborne and spaceborne (SAR) have a great potential to quantify biomass and structural diversity because of its penetration capability. Polarizations are important elements in SAR systems due to sensitivity of them to backscattering mechanisms and can be useful to estimate biomass. Full Polarimetric Synthetic Aperture ...
متن کاملSeparation of Built-up Areas Using Polarization Orientation from Polarimetric Sar Images
Polarimetric decomposition and classification are important applications for polarimetric synthetic aperture radar (POLSAR) images. Among many methods developed so far, entropy-anisotropy-alpha classification [1] and three component decomposition [2] are most popular. In an urban area analysis, it is found that the polarimetric analysis has a problem to identify built-up areas. With the three c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016