Exercise induces lipoprotein lipase and GLUT-4 protein in muscle independent of adrenergic-receptor signaling.

نویسندگان

  • J S Greiwe
  • J O Holloszy
  • C F Semenkovich
چکیده

Exercise increases the expression of lipoprotein lipase (LPL) and GLUT-4 in skeletal muscle. Intense exercise increases catecholamines, and catecholamines without exercise can affect the expression of both LPL and GLUT-4. To test the hypothesis that adrenergic-receptor signaling is central to the induction of LPL and GLUT-4 by exercise, six untrained individuals [age 28 +/- 4 (SD) yr, peak oxygen uptake 3.6 +/- 0.3 l/min] performed two exercise bouts within 12 days. Exercise consisted of cycling at approximately 65% peak oxygen uptake for 60 min with (block trial) and without (control trial) adrenergic-receptor blockade. Exercise intensity was the same during the block and control trials. Plasma catecholamine concentrations were significantly higher and heart rates were significantly lower during the block trial compared with the control trial, consistent with known effects of adrenergic-receptor blockade. However, blockade did not prevent the induction of either LPL or GLUT-4 proteins assayed in biopsies of skeletal muscle. LPL was significantly increased by 170-240% and GLUT-4 was significantly increased by 32-51% at 22 h after exercise compared with before exercise during both the control and block trials. These findings provide evidence that exercise increases muscle LPL and GLUT-4 protein content via signals generated by alterations in cellular homeostasis and not by adrenergic-receptor stimulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conjugated linoleic acid supplementation enhances insulin sensitivity and peroxisome proliferator-activated receptor gamma and glucose transporter type 4 protein expression in the skeletal muscles of rats during endurance exercise

Objective(s):This study examined whether conjugated linoleic acid (CLA) supplementation affects insulin sensitivity and peroxisome proliferator-activated receptor gamma (PPAR-γ) and glucose transporter type 4 (GLUT-4) protein expressions in the skeletal muscles of rats during endurance exercise. Materials and Methods:Sprague-Dawley male rats were randomly divided into HS (high-fat diet (HFD) s...

متن کامل

Acute regulation by insulin of phosphatidylinositol-3-kinase, Rad, Glut 4, and lipoprotein lipase mRNA levels in human muscle.

We have investigated the acute regulation by insulin of the mRNA levels of nine genes involved in insulin action, in muscle biopsies obtained before and at the end of a 3-h euglycemic hyperinsulinemic clamp. Using reverse transcription-competitive PCR, we have measured the mRNAs encoding the two insulin receptor variants, the insulin receptor substrate-1, the p85alpha subunit of phosphatidylino...

متن کامل

Comparison of the Alterations of Gene Expression Related to Signaling Pathways of Synthesis and Degradation of Skeletal Muscle Protein Induced by Two Exercise Training Protocols

Background and Objectives: Skeletal muscle mass depends on the balance between synthesis and degradation of muscle protein, which changes with aging and disease. The aim of the present reserch was to examine the effects of two exercise training protocols on alterations of some genes involved in pathways of protein synthesis and degradation in order to achieve a more effective training program i...

متن کامل

Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance.

Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic-euglycemic clamp to determine the effect of tis...

متن کامل

Mechanisms underlying impaired GLUT-4 translocation in glycogen-supercompensated muscles of exercised rats.

Exercise training induces an increase in GLUT-4 in muscle. We previously found that feeding rats a high-carbohydrate diet after exercise, with muscle glycogen supercompensation, results in a decrease in insulin responsiveness so severe that it masks the effect of a training-induced twofold increase in GLUT-4 on insulin-stimulated muscle glucose transport. One purpose of this study was to determ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 89 1  شماره 

صفحات  -

تاریخ انتشار 2000