Node and layer eigenvector centralities for multiplex networks
نویسندگان
چکیده
Eigenvector-based centrality measures are among the most popular centrality measures in network science. The underlying idea is intuitive and the mathematical description is extremely simple in the framework of standard, mono-layer networks. Moreover, several efficient computational tools are available for their computation. Moving up in dimensionality, several efforts have been made in the past to describe an eigenvector-based centrality measure that generalizes Bonacich index to the case of multiplex networks. In this work, we propose a new definition of eigenvector centrality that relies on the Perron eigenvector of a multi-homogeneous map defined in terms of the tensor describing the network. We prove that existence and uniqueness of such centrality are guaranteed under very mild assumptions on the multiplex network. Extensive numerical studies are proposed to test the newly introduced centrality measure and to compare it to other existing eigenvector-based centralities.
منابع مشابه
Eigenvector centrality of nodes in multiplex networks
We extend the concept of eigenvector centrality to multiplex networks, and introduce several alternative parameters that quantify the importance of nodes in a multi-layered networked system, including the definition of vectorial-type centralities. In addition, we rigorously show that, under reasonable conditions, such centrality measures exist and are unique. Computer experiments and simulation...
متن کاملLobby index as a network centrality measure
We study the lobby index ( l for short) as a local node centrality measure for complex networks. The l is compared with degree (a local measure), betweenness and Eigenvector centralities (two global measures) in the case of a biological network (Yeast interaction protein-protein network) and a linguistic network (Moby Thesaurus II ). In both networks, the l has poor correlation with betweenness...
متن کاملEigenvector-Based Centrality Measures for Temporal Networks
Numerous centrality measures have been developed to quantify the importances of nodes in time-independent networks, and many of them can be expressed as the leading eigenvector of some matrix. With the increasing availability of network data that changes in time, it is important to extend such eigenvector-based centrality measures to time-dependent networks. In this paper, we introduce a princi...
متن کاملCentralities in simplicial complexes. Applications to protein interaction networks.
Complex networks can be used to represent complex systems which originate in the real world. Here we study a transformation of these complex networks into simplicial complexes, where cliques represent the simplices of the complex. We extend the concept of node centrality to that of simplicial centrality and study several mathematical properties of degree, closeness, betweenness, eigenvector, Ka...
متن کاملCentralities in Simplicial Complexes
Complex networks can be used to represent complex systems which originate in the real world. Here we study a transformation of these complex networks into simplicial complexes, where cliques represent the simplices of the complex. We extend the concept of node centrality to that of simplicial centrality and study several mathematical properties of degree, closeness, betweenness, eigenvector, Ka...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.08448 شماره
صفحات -
تاریخ انتشار 2017