Tbx3 controls the fate of hepatic progenitor cells in liver development by suppressing p19ARF expression.
نویسندگان
چکیده
Although the T-box family of transcription factors function in many different tissues, their role in liver development is unknown. Here we show that Tbx3, the T-box gene that is mutated in human ulnar-mammary syndrome, is specifically expressed in multipotent hepatic progenitor cells, ;hepatoblasts', isolated from the developing mouse liver. Tbx3-deficient hepatoblasts presented severe defects in proliferation as well as uncontrollable hepatobiliary lineage segregation, including the promotion of cholangiocyte (biliary epithelial cell) differentiation, which thereby caused abnormal liver development. Deletion of Tbx3 resulted in the increased expression of the tumor suppressor p19(ARF) (Cdkn2a), which in turn induced a growth arrest in hepatoblasts and activated a program of cholangiocyte differentiation. Thus, Tbx3 plays a crucial role in controlling hepatoblast proliferation and cell-fate determination by suppressing p19(ARF) expression and thereby promoting liver organogenesis.
منابع مشابه
09-P043 Tbx3 promotes liver bud expansion during mouse development by suppression of cholangiocyte differentiation
UNLABELLED After specification of the hepatic endoderm, mammalian liver organogenesis progresses through a series of morphological stages that culminate in the migration of hepatocytes into the underlying mesenchyme to populate the hepatic lobes. Here, we show that in the mouse the transcriptional repressor Tbx3, a member of the T-box protein family, is required for the transition from a hepati...
متن کاملExpression of Endoderm and Hepatic Specific Genes after in vitro Differentiation of Human Embryonic Stem Cells
Background: Human embryonic stem cells (hESC), which are derived from the inner cell mass of the blastocysts, have been considered to be pluripotent cells. In this study we examine the differentiating potential of hESC into hepatocytes by characterization of the expression of endoderm and liver-specific genes. Methods: hESC were cultivated in suspension to form aggregates, the embryoid bodies. ...
متن کاملThe protective effect of bone marrow-derived mesenchymal stem cells in liver ischemia/reperfusion injury via down-regulation of miR-370
Objective(s): Liver transplantation is the most important therapy for end-stage liver disease and ischemia reperfusion (I/R) injury is indeed a risk factor for hepatic failure after grafting. The role of miRNAs in I/R is not completely understood. The aim of this study was to investigate the potential protective role of the mesenchymal stem cells (MSCs) and ischemic pr...
متن کاملEffects of Inflammatory Cytokine Tumor Necrosis Factor-α on Human Mesenchymal Stem Cell Gene Expression: A Mechanism for Liver Regeneration
Introduction Insulin-like growth factor I (IGF-I) which is produced in abundance in the normal adult liver, is deeply involved in hepatocyte survival, growth, and differentiation during liver development. IGF-I plays the roles via the receptor (IGF-IR) signaling pathway. IGF-IR unlike IGF-I is expressed strongly in the developing liver, but much more weakly in adults. Objective: We hypothesi...
متن کاملMesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 135 9 شماره
صفحات -
تاریخ انتشار 2008