Harvesting Training Images for Fine-Grained Object Categories Using Visual Descriptions

نویسندگان

  • Josiah Wang
  • Katja Markert
  • Mark Everingham
چکیده

We harvest training images for visual object recognition by casting it as an IR task. In contrast to previous work, we concentrate on fine-grained object categories, such as the large number of particular animal subspecies, for which manual annotation is expensive. We use ‘visual descriptions’ from nature guides as a novel augmentation to the well-known use of category names. We use these descriptions in both the query process to find potential category images as well as in image reranking where an image is more highly ranked if web page text surrounding it is similar to the visual descriptions. We show the potential of this method when harvesting images for 10 butterfly categories: when compared to a method that relies on the category name only, using visual descriptions improves precision for many categories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tell and Predict: Kernel Classifier Prediction for Unseen Visual Classes from Unstructured Text Descriptions

In this paper we propose a framework for predicting kernelized classifiers in the visual domain for categories with no training images where the knowledge comes from textual description about these categories. Through our optimization framework, the proposed approach is capable of embedding the class-level knowledge from the text domain as kernel classifiers in the visual domain. We also propos...

متن کامل

Learning Models for Object Recognition from Natural Language Descriptions

We investigate the task of learning models for visual object recognition from natural language descriptions alone. The approach contributes to the recognition of fine-grain object categories, such as animal and plant species, where it may be difficult to collect many images for training, but where textual descriptions of visual attributes are readily available. As an example we tackle recogniti...

متن کامل

Fine-grained categorization via CNN-based automatic extraction and integration of object-level and part-level features

Fine-grained categorization can benefit from part-based features which reveal subtle visual differences between object categories. Handcrafted features have been widely used for part detection and classification. Although a recent trend seeks to learn such features automatically using powerful deep learning models such as convolutional neural networks (CNN), their training and possibly also tes...

متن کامل

Zero-Shot Learning via Visual Abstraction

One of the main challenges in learning fine-grained visual categories is gathering training images. Recent work in Zero-Shot Learning (ZSL) circumvents this challenge by describing categories via attributes or text. However, not all visual concepts, e.g ., two people dancing, are easily amenable to such descriptions. In this paper, we propose a new modality for ZSL using visual abstraction to l...

متن کامل

Weakly Supervised Fine-Grained Image Categorization

In this paper, we categorize fine-grained images without using any object / part annotation neither in the training nor in the testing stage, a step towards making it suitable for deployments. Fine-grained image categorization aims to classify objects with subtle distinctions. Most existing works heavily rely on object / part detectors to build the correspondence between object parts by using o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016