Automatic detection of laughter
نویسندگان
چکیده
In the context of detecting ‘paralinguistic events’ with the aim to make classification of the speaker’s emotional state possible, a detector was developed for one of the most obvious ‘paralinguistic events’, namely laughter. Gaussian Mixture Models were trained with Perceptual Linear Prediction features, pitch&energy, pitch&voicing and modulation spectrum features to model laughter and speech. Data from the ICSI Meeting Corpus and the Dutch CGN corpus were used for our classification experiments. The results showed that Gaussian Mixture Models trained with Perceptual Linear Prediction features performed best with Equal Error Rates ranging from 7.1%-20.0%.
منابع مشابه
Decision-Level Fusion for Audio-Visual Laughter Detection
Laughter is a highly variable signal, which can be caused by a spectrum of emotions. This makes the automatic detection of laughter a challenging, but interesting task. We perform automatic laughter detection using audio-visual data from the AMI Meeting Corpus. Audiovisual laughter detection is performed by fusing the results of separate audio and video classifiers on the decision level. This r...
متن کاملLaughter Classification Using Deep Rectifier Neural Networks with a Minimal Feature Subset
Laughter is one of the most important paralinguistic events, and it has specific roles in human conversation. The automatic detection of laughter occurrences in human speech can aid automatic speech recognition systems as well as some paralinguistic tasks such as emotion detection. In this study we apply Deep Neural Networks (DNN) for laughter detection, as this technology is nowadays considere...
متن کاملFusion for Audio-Visual Laughter Detection
Laughter is a highly variable signal, and can express a spectrum of emotions. This makes the automatic detection of laughter a challenging but interesting task. We perform automatic laughter detection using audio-visual data from the AMI Meeting Corpus. Audio-visual laughter detection is performed by combining (fusing) the results of a separate audio and video classifier on the decision level. ...
متن کاملEvaluating automatic laughter segmentation in meetings using acoustic and acoustic-phonetic features
In this study, we investigated automatic laughter segmentation in meetings. We first performed laughterspeech discrimination experiments with traditional spectral features and subsequently used acousticphonetic features. In segmentation, we used Gaussian Mixture Models that were trained with spectral features. For the evaluation of the laughter segmentation we used time-weighted Detection Error...
متن کاملLaughter detection using ALISP-based N-Gram models
Laughter is a very complex behavior that communicates a wide range of messages with different meanings. It is highly dependent on social and interpersonal attributes. Most of the previous works (e.g. [1, 2]) on automatic laughter detection from audio uses frame-level acoustic features as parameters to train their machine learning techniques, such as Gaussian Mixture Models (GMMs), Support Vecto...
متن کاملAutomatic Detection of Laughter using Respiratory Sensor Data with Smile Degree
Emotion detection in social activities is crucial for evaluating their effective interactions especially in group conversation. Among expressions of human emotions laugher is a part of human behavior regulated by the brain. It helps humans to clarify their intentions in social interaction and providing an emotional context to conversations. Automatic detection method of laughter is one of the l...
متن کامل